Cho tam giác ABC vuông ở A coa AB=16cm, AC=30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đển các đỉnh của tam giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ sắp phải đi học
\(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+30^2}=34\left(cm\right)\)
Ta có \(\Delta ABC\perp A\)( gt )
\(MC=\sqrt{AC^2+AM^2}=\sqrt{30^2+8^2}=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+15^2}=\sqrt{481}\)
Khoảng cách từ G đến các đỉnh bằng 2/3 khoảng cách đường trung tuyến
\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{16^2+30^2}\)
\(BC=34\left(cm\right)\)
Ta có: Tam giác ABC vuông tại A
\(MC=\sqrt{AC^2+AM^2}\)
\(MC=\sqrt{30^2+8^2}\)
\(MC=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}\)
\(BD=\sqrt{16^2+15^2}=\sqrt{481}\left(cm\right)\)
Khoảng cách từ trọng tâm G của tam giác là: 2/3
Gọi AM,BN,CE lần lượt là các đường trung tuyến của ΔABC
=>AM,BN,CE đồng quy tại G
BC=căn 6^2+8^2=10cm
=>AM=5cm
=>AG=10/3cm
AN=8/2=4cm
=>BN=căn 6^2+4^2=2*căn 13(cm)
=>BG=2/3*2căn 13=4/3*căn 13(cm)
AE=6/2=3cm
CE=căn 3^2+8^2=căn 73(cm)
=>CG=2/3*căn 73(cm)