K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2015

khi tin vào lời nói dói ta thấy nhiều chuyện dở khóc dở cười

4 tháng 9 2015

Đúng       

10 tháng 1 2019

là 0 đấy

9 tháng 12 2019

Hắt xì...!

31 tháng 8 2023

Phương pháp giải:

- Đọc lại các văn bản được nêu ra trong đề bài.

- Chú ý những nét đặc sắc, nổi bật của từng bài.

Lời giải chi tiết:

a. Một số đặc điểm chính của văn chính luận Nguyễn Trãi qua Bình Ngô đại cáo, Thư lại dụ Vương Thông:

- Có mục đích và đối tượng hướng đến rõ ràng.

- Lí lẽ và bằng chứng chặt chẽ, thuyết phục.

- Sử dụng đan xen các yếu tố tự sự, biểu cảm.

- Thể hiện hiện tư tưởng nhân nghĩa.

- Vừa đảm bảo yếu tố về lí và tình, vừa có sức thuyết phục.

b. Một số nét đặc sắc của thơ Nguyễn Trãi qua Bảo kính cảnh giới - bài 43, Dục Thúy sơn:

- Có sáng tạo trong thể thơ Nôm Đường luật.

- Đặt nền móng và mở đường cho sự phát triển của thơ tiếng Việt.

- Hình ảnh thiên nhiên nên thơ, giàu màu sắc, đường nét, âm thanh, mang tư tưởng và tình cảm của Nguyễn Trãi.

c. Những nét nổi bật về tư tưởng, con người Nguyễn Trãi qua văn thơ của ông.

- Không thể tách bạch các yếu tố nhà ngoại giao, nhà hiền triết, nhà nho.

- Hết lòng nâng niu năng lực sáng tạo của nhân dân.

- Mang nặng tư tưởng nhân nghĩa.

- Sống liêm khiết.

HQ
Hà Quang Minh
Giáo viên
26 tháng 11 2023

a. Một số đặc điểm chính của văn chính luận Nguyễn Trãi qua Bình Ngô đại cáo, Thư lại dụ Vương Thông:

- Hệ thống luận điểm rõ ràng, kết nối chặt chẽ, lô-gic.

- Lí lẽ đanh thép kèm theo dẫn chứng cụ thể, thuyết phục.

- Sử dụng thích hợp các biện pháp tu từ tạo sức biểu cảm cao và làm tăng hiệu quả biểu đạt.

- Giọng văn phù hợp với từng hoàn cảnh, mục đích viết, đối tượng hướng tới và thay đổi linh hoạt trong từng luận điểm khác nhau.

b. Một số nét đặc sắc trong thơ Nguyễn Trãi qua Bảo Kính cảnh giới - bài 43Dục Thúy Sơn

-Các quan sát, miêu tả thiên nhiên tinh tế, độc đáo, mới lạ.

- Cảnh vật thường được nhân hoá, sinh động, hữu tình, mang hơi thở, tâm hồn, tình cảm con người.

- Trong cảnh luôn có tình, từ cảnh đi đến bộc lộ tình.

c. Những nét nổi bật về tư tưởng, con người Nguyễn Trãi qua văn thơ ông.

- Yêu nước thương dân là tư tưởng xuyên suốt thơ văn Nguyễn Trãi. Nó thể hiện ở tinh thần nhân nghĩa, trừ bạo để yên dân, ở tấm lòng ưu ái luôn mong dân được no ấm, yên vui, ở tình cảm gắn bó thiết tha với quê hương, xóm làng.

22 tháng 2 2016

Đáp án bài toán trong đề thi Olympic lớp 9 của Nga

Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.​

  • Bài toán trong đề thi Olympic lớp 9 của Nga

Đề bài:

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối.

Những bài toán về Hiệp sĩ và Kẻ lừa dối luôn hấp dẫn và cho dù đã giải không ít những bài toán như vậy, chúng ta vẫn có thể rất bất ngờ với những cách phát biểu tươi mới. Xin giới thiệu với bạn đọc một đề thi Olympic Toán lớp 9 của Nga.

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối luôn nói dối. Mỗi một người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của Hiệp sĩ là Kẻ lừa dối và bạn của Kẻ lừa dối là Hiệp sĩ. Mỗi người đều được hỏi "Có phải bạn của anh đang ngồi cạnh anh không?". 15 người ngồi ở vị trí lẻ trả lời "Đúng".

Tìm số người ngồi ở vị trí chẵn cũng trả lời "Đúng".

Giải:

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.

22 tháng 2 2016

Đáp án là 0 nha bạn

20 tháng 2 2016

đáp số là 0 nha bạn

10 tháng 3 2016

Giải:

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

6 tháng 5 2022

Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.​

  • Bài toán trong đề thi Olympic lớp 9 của Nga

Đề bài:

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối.

Những bài toán về Hiệp sĩ và Kẻ lừa dối luôn hấp dẫn và cho dù đã giải không ít những bài toán như vậy, chúng ta vẫn có thể rất bất ngờ với những cách phát biểu tươi mới. Xin giới thiệu với bạn đọc một đề thi Olympic Toán lớp 9 của Nga.

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối luôn nói dối. Mỗi một người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của Hiệp sĩ là Kẻ lừa dối và bạn của Kẻ lừa dối là Hiệp sĩ. Mỗi người đều được hỏi "Có phải bạn của anh đang ngồi cạnh anh không?". 15 người ngồi ở vị trí lẻ trả lời "Đúng".

Tìm số người ngồi ở vị trí chẵn cũng trả lời "Đúng".

Giải:

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.

16 tháng 1 2016

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp hiệp sĩ – kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh ở các vị trí chẵn và đều là kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là hiệp sĩ, có bao nhiêu người là kẻ lừa dối và họ xếp ở những vị trí nào.