K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

\(_{\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\times\left(m+n\right)\Rightarrow p^2=m^2+m\times n-m-n\Rightarrow p^2=m^2+m\times n-m-2\times n}\)

Vậy A\(=p^2-n=m^2+m\times n-m-2\times n\)

22 tháng 3 2016

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

25 tháng 1 2017

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)

24 tháng 9 2016

m và n là số tự nhiên => m , n ≥ 0 

p là số nguyên tố 

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2

Chú ý : m – 1< m + n ( 1 ) 

Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 ) 

Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.

Khi đó m = 2 và tất nhiên 2 + n = p2

Do đó A = p2 - n = 2

24 tháng 9 2016

OMG !!!!

\(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\left(m+n\right)\)

p là số nguyên tố=>Ư(p2)={1;p;p2}

m+n>m-1=>m-1=1

=>m=2

=>2+n=p2

=>p2-n=2