\(A=\frac{17^{20}+2}{17^{20}-1}v\text{à }B=\frac{17^{20}-2}{17^{20}-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{17}.\frac{16}{33}+\frac{5}{33}.\frac{20}{17}-\frac{2}{17}.\frac{5}{33}\)
\(=\frac{5}{17}.\frac{16}{33}+\frac{5}{17}.\frac{20}{33}-\frac{5}{17}.\frac{2}{33}\)
\(=\frac{5}{17}.\left(\frac{16}{33}+\frac{20}{33}-\frac{2}{33}\right)\)
\(=\frac{5}{17}.\frac{34}{33}\)
\(=\frac{10}{33}\)
Chúc bạn học tốt !!!
\(\left(1\frac{1}{4}-\frac{3}{5}\right):\frac{17}{20}< \frac{x}{17}< \left(5\frac{1}{3}-3\frac{1}{2}\right).\frac{12}{17}\)
= \(\left(\frac{5-3}{4}\right):\frac{17}{20}< \frac{x}{17}< \left(\frac{16}{3}-\frac{7}{2}\right).\frac{12}{17}\)
= \(\frac{1}{2}:\frac{17}{20}< \frac{x}{17}< \left(\frac{32-21}{6}\right).\frac{12}{17}\)
= \(\frac{10}{17}< \frac{x}{17}< \frac{3}{2}.\frac{12}{17}\)
= \(\frac{10}{17}< \frac{x}{17}< \frac{18}{17}\)
( Mik thấy mẫu giống nhau mik sẽ bỏ mẫu đi mik sẽ tìm tử )
=> 10 < 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 < 18
=> x = { 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 }
k mik nha làm ơn đó
áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)
\(\Rightarrow A< B\)
\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)
\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)
\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)
ta có A=\(\frac{17^{18}+1}{17^{19}+1}\)<\(\frac{17^{18}+1+16}{17^{19}+1+16}\) (nếu a/b<1 thì a+c/b+c>a/b)
A<\(\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}\)
A,<\(\frac{17^{17}+1}{17^{18}+1}\)=B
hay A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\) với \(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta có :B=\(\frac{17^{17}+1}{17^{18}+1}=\frac{17^{18}+17}{17^{19}+17}\)
Ta có:1-B=\(1-\frac{17^{18}+17}{17^{19}+17}=\frac{17^{19}+17-17^{18}-17}{17^{19}+17}=\frac{17^{19}-17^{18}}{17^{19}+17}\)
1-A=1-\(\frac{17^{18}+1}{17^{19}+1}=\frac{17^{19}+1-17^{18}-1}{17^{19}+1}=\frac{17^{19}-17^{18}}{17^{19}+1}\)
Do \(17^{19}+1< 17^{19}+10\Rightarrow1-A>1-B\)
\(\Rightarrow A< B\)
Ta có:\(\frac{17}{21}+\frac{17}{20}+\frac{17}{19}>\frac{17}{21}+\frac{17}{21}+\frac{17}{21}\)
Mà :\(\frac{17}{21}+\frac{17}{21}+\frac{17}{21}=\frac{51}{21}>\frac{42}{21}=2\)
\(\Rightarrow\frac{17}{21}+\frac{17}{20}+\frac{17}{19}>2\left(đpcm\right)\)
Chúc Bạn Học Tốt (Tks PP)
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
\(=\dfrac{57}{20}-\dfrac{26}{15}+6.45:3\)
\(=\dfrac{58\cdot3-26\cdot2}{60}+\dfrac{43}{20}\)
\(=\dfrac{122}{60}+\dfrac{129}{60}=\dfrac{251}{60}\)
\(A=\frac{17^{20}+2}{17^{20}-1}=\frac{17^{20}-1+3}{17^{20}-1}=1+\frac{3}{17^{20}-1}\)
\(B=\frac{17^{20}-2}{17^{20}-5}=\frac{17^{20}-5+3}{17^{20}-5}=1+\frac{3}{17^{20}-5}\)
Vì \(17^{20}-1>17^{20}-5\)
\(=>\frac{3}{17^{20}-1}<\frac{3}{17^{20}-5}\)
\(=>1+\frac{3}{17^{20}-1}<1+\frac{3}{17^{20}-5}\)
=>A<B