K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

\(P=4a^2+4ab+4b^2-12a-12b+12=\left[\left(4a^2-12a+9\right)+2b\left(2a-3\right)+b^2\right]+3b^2-6b+12\\ =\left(2a+b-3\right)^2+3\left(b-1\right)^2+9\)

18 tháng 2 2016

Bài này khó đấy  Ngô Hồng Thuận ạ

18 tháng 2 2016

Nếu ko ai ở trên  

     trả lời chính xác thì bạn hãy lên h.vn nhé .^_^

20 tháng 2 2017

\(P=\left(4a^2+b^2+4ab-12a-6b+9\right)+\left(3b^2-6b+3\right)\)

\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)

Đẳng thức xẩy ra khi: \(\left\{\begin{matrix}\left(b-1\right)=0\\2a+b-3=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}b=1\\a=1\end{matrix}\right.\)

Kết luận: GTNN P=0 khi a=b=1

20 tháng 2 2016

[(4a^2 - 12a + 9) + 2b(2a - 3) + b^2] + 3b^2 - 6b + 3

= (2a - 3 + b)^2 + 3(b-1)^2

=> P nhỏ nhất = 0 khi (2a - 3 + b) = 3(b-1) = 0

tick cho mk nhaeoeo

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

12 tháng 1 2015

Ta thấy:      |x-10| >= 0      (1);          |x-10| >= 0        (2)

Cộng 2 bđt cùng chiều (1) và (2) ta được:   |x-10| + |x-10| >= 0    <=>  A= |x-10| + |x-10| -2 >= -2

=> minA = -2  

Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100

 Chắc v!! =)))

      

1 tháng 3 2016

giúp với mình sắp nạp rồi

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi