chứng minh rằng: 5/(1.2.3) + 8/(2.3.4) + 11/(3.4.5) + ..... + 6038/(2012.2013.2014) < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi biểu thức là A
ta có :
A=3/1.2.3 + 5/2.3.4 + 7/3.4.5 +....+ 2017/1008.1009.1010
A= (1.2/1.2.3 + 2.2/2.3.4 + 3.2/3.4.5 + ... + 1008.2/1008.1009.1010) + (1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/1008.1009.1010)
A=(2/2.3 + 2/3.4 + 2/4.5 +...+ 2/1009.1010 + 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5 + ... + 1/1008.1009 - 1/1009.1010
A=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/1009-1/1010)+1/2.(1/2-1/1009.1/1010)
A<2.1/2 + 1/2.1/2 = 1+1/4 = 5/4
OK nhớ tk cho mình nhé ( dấu này / là dấu phần nhé) chúc bạn học tốt
ta xét vế M
đầu tiên bạn tách 2014 ra ngoài
sau đó nhân 2 vào tử và mẫu , rồi tách 1/2 ra ta có 1007 .( ..........................)
bây giờ tính vế trong ngoặc và trong ngoặc <1
=> M>N
Gọi biểu thức là \(A\). Ta có :
\(A=\dfrac{3}{1.2.3}+\dfrac{5}{2.3.4}+\dfrac{7}{3.4.5}+...+\dfrac{2017}{1008.1009.1010}\)
\(A=\left(\dfrac{1.2}{1.2.3}+\dfrac{2.2}{2.3.4}+\dfrac{3.2}{3.4.5}+...+\dfrac{1008.2}{1008.1009.1010}\right)+\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{1008.1009.1010}\right)\)\(A=\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{1009.1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{1008.1009}-\dfrac{1}{1009.1010}\right)\)
\(A=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{1009}-\dfrac{1}{1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{1009.1010}\right)\)
\(A< 2.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{2}=1+\dfrac{1}{4}=\dfrac{5}{4}\)
Ta có \(k\left(k+1\right)\left(k+2\right)=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\cdot4\)
\(=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\\ =\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\dfrac{1}{4}\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Từ đó ta được \(S=\dfrac{1}{4}\cdot1\cdot2\cdot3\cdot4-\dfrac{1}{4}\cdot0\cdot1\cdot2\cdot3+...+\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12-\dfrac{1}{4}\cdot8\cdot9\cdot10\cdot11\\ \Leftrightarrow S=\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12\\ \Leftrightarrow4S+1=9\cdot10\cdot11\cdot12+1=11881=109^2\left(đpcm\right)\)
hoc24.vn giúp em với ạ, em cần gấp
hehe tick đi mình giải cho