Cho tứ giác ABCD có BD và CA cắt nhau tại M . Cm (AB+BC+CD+DA ):2 < MA+MB+MC+MD < AB+BC+CD+DA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M
a/ Áp dụng BĐT ba điểm :
\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)
Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)
\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
b/ Ta cũng áp dụng BĐT ba điểm :
\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)
Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
Hình bạn tự vẽ nhé.
a) Theo bất đẳng thức tam giác:
MA+MB> AB (1)
MC+MD>CD (2)
=> MA +MB +MC +MD >AB +CD
b) Theo BĐT tam giác:
MA+MD > AD (3)
MB +MC >BC (4)
(1)(2)(3)(4) => 2(MA +MB+MC+MD)>AB +BC +CD +AD
MA +MB +MC +MD>AB +BC +CD +AD /2
Mình không nghĩ là dấu≥ vì bất đẳng thức tam giác đâu có dấu bằng đâu nhỉ?
Câu này dễ mà.Mình học lớp 7 mà mình còn biết nữa đó.Chắc bạn thắc mắc là vì sao mình học lớp 7 mà mình biết bài lớp 8 đúng không.Tại vì mình có thi học sinh giỏi và đạt giải nhì vòng trường lớp 6 luôn đấy,thấy mình giỏi không.