K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

25 tháng 6 2019

bạn ơi cho mk hỏi 1 bài làm giúp mk đc ko vậy ạ

25 tháng 6 2019

2n  là số chẳn , n và n+1 n chẳn thì n+1 là lẻ và ngược lại nên A = -1

13 tháng 3 2016

A=\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

=>2A=1+\(\frac{1}{2}+...+\frac{1}{2^{98}}\)

=>2A-A=A=\(\left(1+\frac{1}{2}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)

=>A=\(1-\frac{1}{2^{99}}\)

13 tháng 3 2016

mình chịu thua vì mình cũng gặp câu này mà ko có lời giải

19 tháng 12 2017

hello

Bài toán. Cho \(x,y,z>0,x+y+z\le k\). Chứng minh:\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\ge\frac{\left(1+2m\right)^2}{k^2}\)Nói chung, cách chứng minh bài này không có gì khó, thậm chí có thể nói là rất dễ....
Đọc tiếp

Bài toán. Cho \(x,y,z>0,x+y+z\le k\). Chứng minh:

\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\ge\frac{\left(1+2m\right)^2}{k^2}\)

Nói chung, cách chứng minh bài này không có gì khó, thậm chí có thể nói là rất dễ. Vì:;

\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{\left(2m\right)^2}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{\left(1+2m\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(1+2m\right)^2}{\left(x+y+z\right)^2}=\frac{\left(1+2m\right)^2}{k^2}\)

Vậy, vấn đề ở đây không phải là lời giải, mà là dấu đẳng thức.

Quan sát một chút ta thấy x, y, z là đối xứng nhau và điều kiện là \(x+y+z=1\).

Nên ta đoán \(\hept{\begin{cases}x=y=t\\x+y+z=k\end{cases}}\Rightarrow z=k-2t\left(0\le t\le\frac{k}{2}\right)\)   (*)

Ta xét: \(P\left(x,y,z\right)=\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\)

Chọn t sao cho \(P\left(t,t,k-2t\right)=\frac{\left(1+2m\right)^2}{k^2}\) 

Quy đồng lên và phân tích thành nhân tử, nó tương đương với: \(k^2m-4kmt+6mt^2-2kt+3t^2=0\)

Dùng công thức nghiệm của phương trình bậc 2, dễ có: \(t_1=\frac{k\left(1+2m+\sqrt{-2m^2+m+1}\right)}{3\left(1+2m\right)},t_2=\frac{k\left(-1-2m+\sqrt{-2m^2+m+1}\right)}{3\left(1+2m\right)}\)

Cần chú ý rằng, tùy vào tham số k, m ở từng bài mà \(-2m^2+m+1,t_1,t_2\) có thể âm hoặc dương nên sau đó ta cần..(Không biết nói  sao cho hay hết! Các bạn tự hiểu nha :D)

Với \(m=\frac{1}{\sqrt{2}}\)ta được bài https://olm.vn/hoi-dap/detail/259605114604.html

Lưu ý. Không phải lúc nào ta cũng may mắn có được như (*), có khi các biến hoàn toàn đối xứng nhưng đẳng thức lại xảy ra hoàn toàn lệch nhau! Chính vì vậy, bài trên dù dấu đẳng thức xấu nhưng ta vẫn "còn may".

Nếu không việc tìm dấu đẳng thức còn mệt hơn nhiều :D

0
14 tháng 8 2017

dễ mà bn

29 tháng 6 2021

Ta có 1 - a2 = 1 - a + a - a2 = 1 - a + a(1 - a) = (1 - a)(1 + a)

Khi đó \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{100^2}-1\right)=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)

\(\frac{\left(1-2\right)\left(1+2\right)}{2^2}.\frac{\left(1-3\right)\left(1+3\right)}{3^2}...\frac{\left(1-100\right)\left(1+100\right)}{100^2}\)

\(-\frac{\left(2-1\right)\left(2+1\right).\left(3-1\right)\left(3+1\right)...\left(100-1\right)\left(100+1\right)}{2^2.3^2.4^2....100^2}\)

\(=-\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{\left(1.2.3...99\right).\left(3.4.5...101\right)}{\left(2.3.4...100\right).\left(2.3.4...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)

24 tháng 5 2017

(1-1/3).(1-1/5).(1-1/7).(1-1/9).(1-1/11).(1-1/13).(1-1/2).(1-1/4).(1-1/6).(1-1/8).(1-1/10)

=2/3.4/5.6/7.8/9.10/11.12/13.1/2.3/4.5/6.7/8.9/10

=8/15.48/63.120/143.3/8.35/48.9/10

=384/945.360/1144.315/480

=138240/1081080.315/480

=43545600/518918400=84/1001

24 tháng 5 2017

khó quá

DD
29 tháng 7 2021

\(\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2003}\right)\left(-1\frac{1}{2004}\right)\)

\(=-\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2004}{2003}.\frac{2005}{2004}\)

\(=-\frac{3.4.5.....2004.2005}{2.3.4.....2003.2004}=\frac{-2005}{2}\)

24 tháng 4 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}\)

\(=\frac{1.2.3...98}{2.3.4...99}\)

\(=\frac{1}{99}\)

24 tháng 4 2016

   \(\left(1-\frac{1}{2}\right)\times\left(1-\frac{2}{3}\right)\times...\times\left(1-\frac{1}{99}\right)\)

=  \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{98}{99}\)

=  \(\frac{1\times2\times3\times...\times98}{2\times3\times4\times...\times99}\)

=  \(\frac{1}{99}\)