K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

\(A=\left(\frac{1-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-\left(\sqrt{a}\right)^2}\right)^2\)

\(=\left(1+\sqrt{a}+a\right).\frac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=\frac{1+\sqrt{a}+a}{1+2\sqrt{a}+a}\)

28 tháng 5 2023

\(M=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)=a-1\)

28 tháng 5 2023

\(A=\left(\dfrac{1-a\sqrt{a}}{1-a\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(dkxd:a\ge0,a\ne1\right)\)

\(=\left(1+\sqrt{a}\right).\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1-a\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\dfrac{1-\sqrt{a}}{1-a}\) 

Vậy \(A=\dfrac{1-\sqrt{a}}{1-a}\) với \(a\ge0,a\ne1\)

24 tháng 10 2023

a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)

\(=1-x\sqrt{x}-x\sqrt{x}\)

\(=1-2x\sqrt{x}\)

b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)

\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)