K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải thích các bước giải:

 Giả sử chúng ta chia được một tập `S=n,n+1,…n+17` của `18` số nguyên dương liên tiếp thành tập `A, B` sao cho ∏n∈Aa=∏n∈Bb và tách của các phần tử trong A bằng tích của các phần tử trong B, nếu 1 tập chứa bội số của 19 thì tập còn lại cũng như thế.

Do vậy, S không chứa bội số nào của 19 hoặc chứa ít nhất hai bội số của 19. Vì có duy nhất 1 trong 18 số nguyên dương liên tiếp có thể là bội của 19, S phải không chứa bội số nào. Bởi vậy `n,n+1,…n+17` lần lượt đồng dư `1,2,3,…,18\ mod\ 19` (chia lấy dư). Do vậy, theo quy tắc Wilson:

∏n∈Aa×∏n∈Bb=n(n+1)+…(n+17)=18!=−1 (mod 19)

Tuy nhiên hai tích của bên trái bằng nhau, điều này không có khả năng vì `-1` không là bình phương của phép mod 19. Bởi vậy, không tồn tại hai tập A và B

Hok tốt!!!!!!!!

5 tháng 10 2021

Câu b bạn ạ.