cho tam giác ABC vuông ở A . Đường cao AH . Gọi M và N lần lượt là trung điểm của AH và CH . Chứng minh rằng :
a) M là trực tâm của tam giác ANB
b) BM vuông góc với AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tg vuông AHB~AHC => AH/BH=CH/AH=AC/AB
nhưng AH=2HM ; BH=2HN -gt- nên AV/BH=..=AC/AB=HM / HN
do đo ta có hai tg vuông CHM & AHN cũng ~ với nhau ( ~ là đồng dạng)
suy ra góc ^HAN=^HCM<=> CM và AN là hai cạnh tương ứng của hai góc =mà cặp cạnh kia CH đã vuông góc vơi AH
hoặc MN//AB ta cứ cộng các góc(=) dồn lại cũng ra ^NCM+^MNC+^MNA=!V