K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2015

a+1/a là số nguyên.

=>a+1 chia hết cho a

=>1 chia hết cho a

=>a=Ư(1)=(-1,1)

Xét a=1=>an+1=1+1=2 chia hết cho 1=1n=an

=>an+a chia hết cho an

=>an+1/a là số nguyên.

Xét a=-1.

Với n chẵn=>an+1=1+1=2 chia hết cho 1=1n=an

=>an+a chia hết cho an

=>an+1/a là số nguyên.

Với n lẻ=>an+1=-1+1=0 chia hết cho -1=(-1)n=an

=>an+a chia hết cho an

=>an+1/a là số nguyên.

Vậy an+1/a là số nguyên.

1 tháng 9 2015

Bạn Lê Chí Cường giải không đúng, do hiểu nhầm \(a+\frac{1}{a}\). là \(\frac{a+1}{a}\).

Bài này giải như sau: Ta tiến hành chứng minh bằng quy nạp rằng \(a^n+\frac{1}{a^n}\) là số nguyên dương với mọi \(n\) nguyên dương.

Thực vậy, theo giả thiết \(a+\frac{1}{a}\in Z\) nên khẳng định đúng khi \(n=1.\)

Với \(n=2,\) thì ta có \(a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2\in Z.\)

Giả sử rằng \(a^k+\frac{1}{a^k}\) là số nguyên dương với mọi \(k\) nguyên dương với mọi \(k=1,\ldots,n\). Ta cần chứng minh \(a^{n+1}+\frac{1}{a^{n+1}}\)  cũng là số nguyên. Thực vậy, ta có \(\left(a+\frac{1}{a}\right)\left(a^n+\frac{1}{a^n}\right)=\left(a^{n+1}+\frac{1}{a^{n+1}}\right)+\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\)

\(\to a^{n+1}+\frac{1}{a^{n+1}}=\left(a+\frac{1}{a}\right)\left(a^n+\frac{1}{a^n}\right)-\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\).

Theo giả thiết quy nạp \(\left(a+\frac{1}{a}\right),\left(a^n+\frac{1}{a^n}\right),\left(a^{n-1}+\frac{1}{a^{n-1}}\right)\)  là các số nguyên nên \(a^{n+1}+\frac{1}{a^{n+1}}\)  cũng là số nguyên.

Vậy khẳng định đúng với \(n+1.\). Theo nguyên lí quy nạp khẳng định đúng với mọi số nguyên dương \(n.\)

 

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!

a, gọi ƯCLN(n,2n-1) là d (d thuộc N)

Ta có: n chia hết cho d 

=> 2n chia hết cho d 

2n-1 chia hết cho d 

=> 2n-1-2n chia hết cho d

=> 1 chia hết cho d 

=> d thuộc ước của 1

=> d=1 

=> n bà 2n+1 nguyên tố cùng nhau

6 tháng 10 2018

Mình cũng có câu hỏi giống bạn nè

21 tháng 11 2017

ta có : n-1 , n+1 , n+3 , n+5 là chẵn

chẵn thì chia hết cho 2,4,6,8

2*4*6*8 = 384

nên chia hết cho 384

k cho quỳnh nha hoàng dung

21 tháng 11 2017

sai bét tè le rồi ! lêu lêu!

1 tháng 4 2015

ta có: \(\frac{2a+1}{2a^2+2a}=\frac{2a+1}{2a\left(a+1\right)}\)

nhận xét: 2a  và 2a +1 là 2 số nguyên liên tiếp nên 2a và 2a + 1 không có ước chung nào khác 1; -1          (*)

gọi d = ƯCLN(2a+1; a+1) 

=> 2a+1 chia hết cho d và

     a+ 1 chia hết cho d

=> 2a+ 1 - 2(a+1) = -1 chia hết cho d => d = 1 hoặc -1 => 2a+ 1 và a+ 1 nguyên tố cùng nhau hay chúng ko có ước chung nào khác 1; -1      (**)

Từ (*)(**) => 2a + 1 và 2a.(a+ 1) nguyên tố cùng nhau => phân số đã cho là tối giản

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

đương nhiên rùi nên o phải chứng minh