Cho tam giác ABC vuông tại A , đường cao AH . Biết BH = 2cm , CH = 8cm . Tính các cạnh của tam giác ABC , tỉ số lượng giác của góc B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng:
\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=4\left(cm\right)\)
\(BC=BH+CH=10\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{CH.BC}=4\sqrt[]{5}\) (cm)
\(sinB=\dfrac{AC}{BC}=\dfrac{2\sqrt{5}}{5}\)
\(cosB=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)
\(tanB=\dfrac{AC}{AB}=2\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=2+8=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=2\cdot10=20\\AC^2=8\cdot10=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4\sqrt{5}}{10}=\dfrac{2\sqrt{5}}{5}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2\sqrt{5}}{10}=\dfrac{\sqrt{5}}{5}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{4\sqrt{5}}{2\sqrt{5}}=2\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{2\sqrt{5}}{4\sqrt{5}}=\dfrac{1}{2}\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)
\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
áp dụng hệ thức lượng trong tam giác vuông để tính các cạnh
tam giác ABC có: góc A = 90* đường cao AH . Áp dụng hệ thức lượng : h^=b'c' ta có
AH^2 = BH. CH =3,75 =>AH=1,93CM
THEO htl (hệ thức lượng) b^2= ab' => ab^2= bc.1,5=6 => ab=căn 6
theo định lí pytago: ac= bc^2- ab^2= 2cm
ta có sin b = ac/c =1/2=.> góc b =30*
=>góc c = 60*
CH/BH=3/4
=>AC/AB=(3/4)^2=9/16
=>AC/9=AB/16=(AC+AB)/(9+16)=14/25=0,56
=>AC=5,04; AB=8,96
BC=căn AC^2+AB^2\(\simeq10,28\)
\(sinC=\dfrac{AB}{BC}\simeq0,87\)
=>góc C=61 độ
=>góc B=29 độ
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=BH.CH=8.2=16\Rightarrow AH=4\)cm
Áp dụng định lí Pytago tam giác ABH vuông tại H :
\(AB^2=BH^2+AH^2=4+16=20\Rightarrow AB=2\sqrt{5}\)cm
-> BC = BH + CH = 8 + 2 = 10 cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=100-20=80\Rightarrow AC=4\sqrt{5}\)cm
* sinB = AC/BC = \(\frac{4\sqrt{5}}{10}=\frac{2\sqrt{5}}{5}\)
cosB = AB/BC = \(\frac{2\sqrt{5}}{10}=\frac{\sqrt{5}}{5}\)
tanB = AC/AB = \(\frac{4\sqrt{5}}{2\sqrt{5}}=2\)
cotaB = AB/AC \(\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}\)