CMR: x4-1 chia hết cho 4 với n nguyên tố lớn hơn 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4
Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9
+) Với p = (...1), ta có: p4n=(...1)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...3), ta có: p4n=(...3)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...7), ta có: p4n=(...7)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2
Xét p có dạng 3k+1
=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )
= 3k( 3k+5 )
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+5 là số chẵn
=> 3k( 3k + 5 ) chia hết cho cả 3 và 2
=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6
Xét p có dạng 3k+2
=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )
= ( 3k+1 ) ( 3k + 6 )
= ( 3k + 1 ) [ 3( k + 2 ) ]
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+1 là số chẵn
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6
Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6 )
P/s : đây là dạng toán chứng minh đơn giản nhất của khối 6
Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2
Xét p có dạng 3k+1: ta có
=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )
= 3k( 3k+5 )
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+5 là số chẵn
=> 3k( 3k + 5 ) chia hết cho cả 3 và 2
=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6
Xét p có dạng 3k+2
=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )
= ( 3k+1 ) ( 3k + 6 )
= ( 3k + 1 ) [ 3( k + 2 ) ]
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+1 là số chẵn
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6
Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6
Bài 1 :
Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3.
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư.
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3.
d = q - p cũng chia hết cho 2 do p, q đều lẻ
Vậy d chia hết cho 2*3 = 6
a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ.
\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)
(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))
\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).
Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).
Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).
b) Đặt \(\left(2n+1,3n+1\right)=d\).
Suy ra
\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
giúp với