K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2014

\(=>4A=4+4^2+...+4^{99}+4^{100}\)

\(=>4A-A=\left(4+4^2+...+4^{99}+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)

\(=>3A=4^{100}-1\)

\(=>A=\frac{4^{100}-1}{3}\)

\(\frac{1}{3}B=\frac{4^{100}}{3}\)

=> A<\(\frac{1}{3}B\)

3 tháng 8 2020

A = 1 + 4 + 42 + 43 + ... + 499

4A = 4( 1 + 4 + 42 + 43 + ... + 499 )

4A = 4 + 42 + 43 + ... + 4100

4A - A = 3A

= ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )

= 4 + 42 + 43 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499

= 4100 - 1

=> \(A=\frac{4^{100}-1}{3}\)

B = 4100 => \(\frac{1}{3}B=4^{100}\cdot\frac{1}{3}=\frac{4^{100}}{3}\)

\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{1}{3}B\left(đpcm\right)\)

16 tháng 9 2016

\(A=1+4+4^2+4^3+...+4^{99}\)

\(4A=4+4^2+4^3+4^4+...+4^{100}\)

\(4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3...+4^{99}\right)\)

\(3A=4^{100}-1\)

\(A=\frac{4^{100}}{3}-\frac{1}{3}=\frac{B}{3}-\frac{1}{3}\)

Vậy \(A< \frac{B}{3}\)

16 tháng 9 2016

  A=1+4+42+...+499

4A=4+42+43+...+4100

4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)

 3A=4100-1

Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B