Tìm các chữ số a;b sao cho
a) 5a4b chia hết cho 2,3,5
b)4a92b chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) để a4b ⋮ 2 và 5
thì b=0
để a40 ⋮ 3 và 9 thì tổng các chữ số phải ⋮ 9
⇒ \(\left(a+4\right)\text{⋮}9\)
⇒ \(a=5\)
Vậy a=5, b=0
c) để 2a5b ⋮5 thì b=0 hoặc 5
Nếu b=0 thì a=2
Nếu b=5 thì a=7
Vậy (a,b)=\(\left\{\left(2;0\right);\left(7;5\right)\right\}\)
Bài 7:
a: \(24=2^3\cdot3\)
b: \(75=5^2\cdot3\)
c: \(300=2^2\cdot3\cdot5^2\)
d: \(520=2^3\cdot5\cdot13\)
Bài 6:
a:
Sửa đề: 56ab
Đặt \(X=\overline{56ab}\)
X chia hết cho 2 và 5 nên X chia hết cho 10
=>X có tận cùng là 0
=>b=0
=>\(X=\overline{56a0}\)
X chia hết cho 3 và 9 nên X chia hết cho 9
=>5+6+a+0 chia hết cho 9
=>a+11 chia hết cho 9
=>a=7
=>X=5670
b: Đặt \(X=\overline{3ab}\)
X chia hết cho 2 và 5 nên X chia hết cho 10
=>b=0
=>\(X=\overline{3a0}\)
X chia hết cho 3 và 9 nên X chia hết cho 9
=>3+a+0 chia hết cho 9
=>a=6
=>X=360
c: Đặt \(X=\overline{1a2b}\)
X chia hết cho 5 nên b=0 hoặc b=5
TH1: b=0
=>\(X=\overline{1a20}\)
X chia hết cho 9
=>1+a+2+0 chia hết cho 9
=>a+3 chia hết cho 9
=>a=6
=>X=1620
TH2: b=5
=>\(X=\overline{1a25}\)
X chia hết cho 9
=>1+a+2+5 chia hết cho 9
=>a+8 chia hết cho 9
=>a=1
=>X=1125
a: 0,1246
b:
Sửa đề: Có tích các chữ số bằng 48
Số cần tìm là 8,321
a tích các chữ số có 1 chữsố bằng 120 là
120 = 3x5x8
vậy số tự nhiên bé nhất có tích là 120 là 385
nhớ kic cho mik nhé
nhưng bài này sai thôi tớ ko biết đâu
<=> 10(a+b) +a +b =176
<=> 11(a+b) =176
<=> a + b =16
=> a=7 và b=9 hoặc a=9 và b=7 (vì a khác b)
Vì ac và cb là số có hai chữ số => a=1
=> 10 +c +10c = 100 + c
=> 10c = 90
=>c=9
Vậy số cần tìm là 109
Bài 1:
Giải:
Ta có:
\(\overline{ab}+\overline{bc}=176\)
\(\Rightarrow10a+b+10b+a=176\)
\(\Rightarrow11a+11b=176\)
\(\Rightarrow11\left(a+b\right)=176\)
\(\Rightarrow a+b=16\)
Vì a, b là chữ số nên ta có bảng sau:
a | 7 | 9 | 8 |
b | 9 | 7 | 8 |
Vậy các cặp số \(\left(a;b\right)\) là: \(\left(7;9\right);\left(9;7\right);\left(8;8\right)\)
a. 5a4b chia hết cho 2 & 5 => b=0
5a40 chia hết cho 3
=> 5+4+0+a chia hết cho 3
=> 9+a chia hết cho 3
=> a=0; a=3; a=6; a=9.
b. 4a92b chia hết cho 15
=> 4a92b chia hết cho 3 & 5 (3 x 5=15)
=4a92b chia hết cho 5 => b=0 ; b=5
TH1: b=0
=> 4+9+2+0+a chia hết cho 3
=> 15+a chia hết cho 3
=> a=0; a=3; a=6; a=9
TH2: b=5
=> 4+9+2+5+a chia hết cho 3
=> 20+a chia hết cho 3
=> a=1; a=4; a=7.