Hai vòi cùng chảy vào bể không có nước thì sau 10 giờ đầy bể. Nếu vòi 1 chảy trong 240 phút , vòi 2 chảy trong 420 phút thì bể còn thiếu 7/20 bể nữa sẽ đầy. Hỏi mỗi vòi chảy trong thời gian bao lâu sẽ đầy bể?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 240 phút = 4 giờ; 420 giờ = 7 giờ
Trung bình 1 giờ cả hai vòi chảy được:
1:10 = \(\frac{1}{10}\)(bể)
4 giờ cả hai vòi chảy được:
\(\frac{1}{10}x4=\frac{2}{5}\)(bể)
Sau 4 giờ cả hai vòi cùng chảy, vòi 2 còn phải chảy thêm số giờ là:
7-4 = 3 (giờ)
Trong 3 giờ, vòi 2 chảy đc số phần bể là:
\(\left(1-\frac{7}{20}\right)-\frac{2}{5}=\frac{1}{4}\)(bể)
Trung bình một giờ vòi 2 chảy đc:
\(\frac{1}{4}:3=\frac{1}{12}\)(bể)
Trung bình một giờ vòi 1 chảy đc:
\(\frac{1}{10}-\frac{1}{12}=\frac{1}{60}\)(bể)
Vòi 1 chảy đầy bể sau:
1:\(\frac{1}{60}\)= 60 (giờ)
Vòi 2 chảy đầy bể sau:
1:\(\frac{1}{12}\)= 12 (giờ)
Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.
(Điều kiện: x, y > 80 )
Trong 1 phút vòi thứ nhất chảy được bể; vòi thứ hai chảy được bể.
Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:
Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :
Ta có hệ phương trình:
Đặt . Khi đó hệ phương trình trở thành :
QUẢNG CÁO
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)
Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.
(Điều kiện: x, y > 80 )
Trong 1 phút vòi thứ nhất chảy được 1/x bể; vòi thứ hai chảy được 1/y bể.
Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:
Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :
Ta có hệ phương trình:
Đặt . Khi đó hệ phương trình trở thành :
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)
Kiến thức áp dụng
Giải bài toán bằng cách lập hệ phương trình :
Bước 1 : Lập hệ phương trình
- Chọn các ẩn số và đặt điều kiện thích hợp
- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn
- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.
- Từ các phương trình vừa lập rút ra được hệ phương trình.
Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).
Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.
Đổi: 30'=0,5 giờ
Sau 0,5h thì 2 vòi chảy được số phần bể là: \(\frac{0,5}{3}=\frac{1}{6}\)(bể)
Số phần bể còn lại là: \(1-\frac{1}{6}=\frac{5}{6}\)(bể)
Như vậy sau 10 giờ thì vòi 2 chảy được 5/6 bể
=> Thời gian để vòi 2 chảy đầy bể là: \(\frac{10x6}{5}=12\left(giờ\right)\)
=> Sau 3 giờ thì vòi 2 chảy được số phần bể là: \(\frac{3}{12}=\frac{1}{4}\left(bể\right)\)
=> Sau 3 giờ thì vòi 1 chảy được số phần bể là: \(1-\frac{1}{4}=\frac{3}{4}\left(bể\right)\)
=> Thời gian để vòi 1 chảy đầy bể là: \(\frac{3x4}{3}=4\left(giờ\right)\)
Đáp số: Vòi 1=4 giờ; Vòi 2=12 giờ
Gọi thời gian chảy riêng một mình đầy bể của vòi 1 và vòi 2 lần lượt là a(giờ) và b(giờ)(ĐK: a>0 và b>0)
Trong 1h, vòi 1 chảy được \(\dfrac{1}{a}\)(bể)
Trong 1h, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)
Trong 1h, hai vòi chảy được: \(\dfrac{1}{3}\left(bể\right)\)
Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{3}\left(1\right)\)
Trong 30p thì vòi 1 chảy được: \(\dfrac{1}{2}\cdot\dfrac{1}{a}\left(bể\right)\)
Trong 10h30p thì vòi 2 chảy được \(\dfrac{1}{10,5}\cdot\dfrac{1}{b}=\dfrac{2}{21}\cdot\dfrac{1}{b}\left(bể\right)\)
Theo đề, ta có: \(\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{2}{21}\cdot\dfrac{1}{b}=1\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{2}{21}\cdot\dfrac{1}{b}=1\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{2}{21}\cdot\dfrac{1}{b}=1\\\dfrac{1}{2}\cdot\dfrac{1}{a}+\dfrac{1}{2}\cdot\dfrac{1}{b}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{17}{42}b=\dfrac{5}{6}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-\dfrac{35}{17}\left(loại\right)\\a=\dfrac{122}{51}\end{matrix}\right.\)
=>Đề sai rồi bạn