Một xe máy đi từ A đến B với vận tốc 60 km/giờ. Sau khi đi được nửa quãng đường, xe giảm vận tốc thêm 10 km/giờ, vì vậy xe máy đi đến B chậm hơn 24 phút so với dự định. Tính độ dài quãng đường AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi \(30phút=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x (km/h; x > 0 )
Thì vận tốc đi nửa quãng đường còn lại là \(x+10\)
Nửa quãng đường là : \(\dfrac{1}{2}.120=60\left(km\right)\)
Thời gian xe dự định đi từ A đến B là \(\dfrac{120}{x}\left(h\right)\)
Thời gian xe đi được nửa quãng đường đầu là \(\dfrac{60}{x}\left(h\right)\)
Thời gian xe đi nửa quãng đường còn lại khi tăng thêm 10km/h là \(\dfrac{60}{x+10}\)
Vì tăng thêm 10km/h ở nửa sau quãng đường nên xe đến B sớm hơn \(\dfrac{1}{2}\left(h\right)\) so với dự định nên ta có phương trình.
\(\dfrac{60}{x}+\dfrac{60}{x+10}+\dfrac{1}{2}=\dfrac{120}{x}\)
\(\Leftrightarrow120\left(x+10\right)+120x+x\left(x+10\right)=240\left(x+10\right)\)
\(120x+1200+120x+x^2+10x=240x+2400\)
\(\Leftrightarrow x^2+120x+120x+10x-240x+1200-2400=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2-30x+40x-1200=0\)
\(\Leftrightarrow x\left(x-30\right)+40\left(x-30\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\left(loại\right)\\x=30\left(nhận\right)\end{matrix}\right.\)
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : 60x+60x+10=120x−1260x+60x+10=120x−12
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc ban đầu của người đó là x (km/h; \(x>5\))
Thời gian dự định là \(\dfrac{60}{x}\) (giờ)
Vận tốc lúc sau là x - 5 (km/h)
Thời gian người đó đi trên nửa quãng đường đầu là \(\dfrac{30}{x}\) (giờ)
Thời gian người đó đi trên nửa quãng đường sau là \(\dfrac{30}{x-5}\) (giờ)
Do người đó đến B chậm hơn dự định 1 giờ => ta có phương trình:
\(\dfrac{30}{x}+\dfrac{30}{x-5}=\dfrac{60}{x}+1\)
<=> \(\dfrac{30}{x-5}-\dfrac{30}{x}-1=0\)
<=> \(\dfrac{30x-30\left(x-5\right)-x\left(x-5\right)}{x\left(x-5\right)}=0\)
<=> 30x - 30x + 150 - x2 + 5x = 0
<=> x2 -5x - 150 = 0
<=> (x-15)(x+10) = 0
Mà x > 5
<=> x - 15 = 0
<=> x = 15 (tm)
KL Vận tốc dự định của người đó là 15 km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : \(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-\frac{1}{2}\)
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi x là v.tốc dự định của xe(x>0, km/h)
Nửa quãng đường xe đi là: 120:2=60(km)
=> Vận tốc đi nửa quãng đường là: \(\dfrac{60}{x}\) (km/h)
=> Thời gian đi dự định là: \(\dfrac{120}{x}\left(h\right)\)
Vì nửa qquangx đường sau xe đi với thời gian là: \(\dfrac{60}{x+10}\left(h\right)\)
Theo bra ta có:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-0.5\)
Gải được x=40(tmđk)
Vậy v.tốc dự định là 40km/h
Quãng đường còn lại bằng :
1 - \(\dfrac{2}{5}\) = \(\dfrac{3}{5}\) ( km)
Nếu đi với vận tốc 40km/giờ trong cả quãng đường thì đến B chậm hơn số thời gian so với dự kiến là :
15 : \(\dfrac{3}{5}\) = 25 ( phút )
Đổi 25 phút = \(\dfrac{5}{12}\) giờ
Tỉ số của 50km/giờ và 40km/giờ là :
50 : 40 = \(\dfrac{5}{4}\)
Vì tỉ số của 50km/giờ và 40km/giờ là \(\dfrac{5}{4}\) nên tỉ số thời gian khi đi với vận tốc 50km/giờ và khi đi với vận tốc 40km/giờ là \(\dfrac{4}{5}\)
Nếu đi với vận tốc 50km/giờ thì thời gian đi hết quãng đường là:
\(\dfrac{5}{12}\) : (5 - 4) x 4 = \(\dfrac{5}{3}\) ( giờ )
Quãng đường AB dài là :50 x \(\dfrac{5}{3}\) = \(\dfrac{250}{3}\)(km)
Đáp số : \(\dfrac{250}{3}\)km
Lời giải:
Đổi $15$ phút = 0,25 giờ
Thời gian đi dự kiến: $AB:50=AB\times \frac{1}{50}$ (giờ)
Thực tế:
Người đó đi $\frac{2}{5}\times AB$ km đầu với vận tốc $50$ km/h, và $(1-\frac{2}{5})\times AB=AB\times \frac{3}{5}$ km sau với vận tốc $40$ km/h
Thời gian thực tế là:
$AB\times \frac{2}{5}:50+AB\times \frac{3}{5}:40$
$=AB\times \frac{1}{125}+AB\times \frac{3}{200}=AB\times \frac{23}{1000}$ (giờ)
Chênh lệch thời gian đi và về:
$AB\times \frac{23}{1000}-AB\times \frac{1}{50}=0,25$
$AB\times 0,023-AB\times 0,02=0,25$
$AB\times (0,023-0,02)=0,25$
$AB\times 0,003=0,25$
$AB=0,25:0,003=\frac{250}{3}$ (km)
Gọi độ dài AB là x
Trong 2/5h xe đi được 50*2/5=20km
Theo đề, ta có: \(\dfrac{2}{5}+\dfrac{x-20}{40}=\dfrac{x}{50}+\dfrac{1}{4}\)
=>2/5+1/40x-1/2=1/50x+1/4
=>1/200x=7/20
=>x=70
Quãng đường còn lại là:
\(1-\dfrac{2}{5}=\dfrac{3}{5}\) (km)
Nếu đi với vận tốc 40km/giờ trong cả quãng đường thì đến B chậm hơn số thời gian so với dự kiến là :
\(15:\dfrac{3}{5}=25\) phút
Đổi 25 phút = \(\dfrac{5}{12}\) h
Tỉ số của 50km/giờ và 40km/giờ là :
50 : 40 = \(\dfrac{5}{4}\)
Vì tỉ số của 50km/giờ và 40km/giờ là \(\dfrac{5}{4}\) nên tỉ số thời gian khi đi với vận tốc 50km/giờ và khi đi với vận tốc 40km/giờ là \(\dfrac{4}{5}\)
Nếu đi với vận tốc 50km/giờ thì thời gian đi hết quãng đường là :
\(\dfrac{5}{12}\) : (5 - 4) x 4 = \(\dfrac{5}{3}\) ( giờ )
Quãng đường AB dài là :
50 x \(\dfrac{5}{3}\) = \(\dfrac{250}{3}\) km
Đ/s: \(\dfrac{250}{3}km\)
Gọi vận tốc dự định của xe máy là x ( x >0) đơn vị km/h
30p = 0,5h
Có quãng đường dài 120km -> Tgian xe máy dư định đi là \(t=\frac{s}{v}=\frac{120}{x}\)( giờ)
Theo đề ta có được :
\(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-0,5\)
\(\Leftrightarrow\frac{60\left(x+10\right)}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120}{x}-\frac{0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600+60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{600+120x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\left(600+120x\right)\cdot x=\left(120-0,5x\right)\cdot x\left(x+10\right)\)
Từ đây tiếp tục làm tiếp :>
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Đổi 24p=\(\dfrac{2}{5}h\)
Gọi quãng đường AB là x(km)
Thời gian đi nửa quãng đường là: \(\dfrac{x}{2}:60\)=\(\dfrac{x}{120}\) (h)
Thời gian đi nửa quãng đường sau là: \(\dfrac{x}{2}:50=\dfrac{x}{100}\) (h)
Thời gian đến B theo dự định là : \(\dfrac{x}{60}\) (h)
Vì xe máy đến B muộn 24 phút nên ta có PT:
\(\dfrac{x}{120}+\dfrac{x}{100}=\dfrac{x}{60}+\dfrac{2}{5}\)
Giả PT trên ta được x =240
Vậy quãng đường AB dài 240 km