K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

24 tháng 7 2017

Cái đề thế này ah

\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Vì \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)

\(\Rightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)

24 tháng 7 2017

-_- Làm như thế để chết nhắm :v
Dấu = xảy ra x=y=z=0 => Hỏng .
@Aliba...

18 tháng 3 2017

B=(x+y)/xyz=1/yz + 1/xz 

có (x-y)2 = x2-2xy+y2 >/ 0 => x2-2xy+y2+4xy >/ 4xy =>(x+y)2 >/ 4xy => 1/x + 1/y >/ 4/x+y , đẳng thức xảy ra <=> x=y

=> B=1/yz + 1/xz >/ 4/yz+xz = 4/z(x+y) = 4/z(1-z)

áp dụng bđt am-gm z(1-z) </ (z+1-z)2/4 </ 1/4 

=> B >/ 4/1/4 >/ 16 ,minB=16 ,đẳng thức xảy ra <=> x=y=1/4;z=1/2

18 tháng 3 2017

thanks bạn nhé

3 tháng 11 2018

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\) Do \(xyz=1\Rightarrow abc=1\)

Ta có \(M=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\)

Cần chứng minh \(a^3+b^3\ge ab\left(a+b\right)\) \(BĐT\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(true\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự cộng lại ra ĐPCM

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$A=\frac{1}{xz}+\frac{1}{xy}=\frac{1}{x}(\frac{1}{y}+\frac{1}{z})\geq \frac{1}{x}.\frac{4}{y+z}$

$=\frac{4}{x(y+z)}=\frac{4}{x(2-x)}$

Áp dụng BĐT AM-GM:

$x(2-x)\leq \left(\frac{x+2-x}{2}\right)^2=1$

$\Rightarrow A\geq \frac{4}{1}=4$
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=1; y=z=\frac{1}{2}$