K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=-34x+34y\)

\(=-34\left(x-y\right)\)

Thay x-y=2 vào biểu thức A=-34(x-y), ta được:

\(A=-34\cdot2=-68\)

Vậy: Khi x-y=2 thì A=68

b) Ta có: \(B=ax-ay+bx-by\)

\(=a\left(x-y\right)+b\left(x-y\right)\)

\(=\left(x-y\right)\left(a+b\right)\)

Thay a+b=-7 và x-y=-1 vào biểu thức \(B=\left(x-y\right)\left(a+b\right)\), ta được:

\(B=-1\cdot\left(-7\right)=7\)

Vậy: Khi a+b=-7 và x-y=-1 thì B=7

a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)

\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)

\(=2-6mn-3+6mn\)

=-1

c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)

\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)

\(=4a^3-3a^2+3a-4-4a^3+4a\)

\(=-3a^2+7a-4\)

\(=-3\cdot9-21-4\)

=-27-21-4

=-52

 

7 tháng 5 2017

Rút gọn P = -19.

14 tháng 12 2019

Đáp án đúng : C

19 tháng 12 2020

Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).

Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)

\(\Leftrightarrow0\le x+y\le4\).

Do đó m = 0, n = 4.

Vậy m2 + n2 = 16. Chọn A.

24 tháng 12 2020

Dạ, em cảm ơn

5 tháng 1 2018

Đáp án là A

18 tháng 6 2019

19 tháng 7 2017

a) M = 2016.         b) N = 8100.          c) P = 2.

6 tháng 1 2023

Thay hai điểm `(\sqrt{2};m)` và `(-\sqrt{3};n)` vào `y=x^2` ta có:

    `{(m=(\sqrt{2})^2),(n=(-\sqrt{3})^2):}<=>{(m^2=4),(n^2=9):}`

 `=>m^2-n^2=4-9=-5`

    `->bb D`

6 tháng 1 2023

Thay hai điểm vào hàm số

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2}=m^2\\-\sqrt{3}=n^2\end{matrix}\right.\)

\(m^2-n^2=\sqrt{2}-\left(-\sqrt{3}\right)=\sqrt{2}+\sqrt{3}\)

2 tháng 12 2018