cho ΔABC nội tiếp đường tròn tâm (O) , (O') tiếp xúc các cạnh AB , AC tại E và F. (O') tiếp xúc với (O) tại S. gọi I là tâm của đường tròn nội tiếp ΔABC
chứng minh : BEIS , CFIS nội tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}=90^0\)
=>AEDB là tứ giác nội tiếp đường tròn đường kính AB
Tâm I là trung điểm của AB
Bán kính là \(IA=\dfrac{AB}{2}\)
2: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
\(\widehat{DBH}=\widehat{DAC}\left(=90^0-\widehat{ACB}\right)\)
Do đó: ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>\(DB\cdot DC=DA\cdot DH\)
3: ABDE là tứ giác nội tiếp
=>\(\widehat{ADE}=\widehat{ABE}=\widehat{ABN}\)
Xét (O) có
\(\widehat{ABN}\) là góc nội tiếp chắn cung AN
\(\widehat{AMN}\) là góc nội tiếp chắn cung AN
Do đó: \(\widehat{ABN}=\widehat{AMN}\)
=>\(\widehat{HDE}=\widehat{HMN}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DE//MN