K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

12 tháng 2 2019

Chọn mặt phẳng phụ (ABF) chứa EG

19 tháng 10 2017

Vì G là trọng tâm tam giác BCD và F  là trung điểm của CD nên G thuộc (ABF)

Ta có E là trung điểm của AB nên E thuộc ( ABF).

Gọi M là giao điểm của EG và AF mà A F ⊂ A C D suy ra M thuộc (ACD).

Vậy giao điểm của EG và mp (ACD)  là giao điểm  M của EG và AF

Chọn B.

NV
11 tháng 9 2021

Gọi E là trung điểm AC, do G là trọng tâm tam giác ACD \(\Rightarrow G\in DE\)

Theo t/c trọng tâm: \(\dfrac{GE}{GD}=\dfrac{1}{2}\)

Do I là trung điểm AB, M là trung điểm BC \(\Rightarrow\) IM là đường trung bình tam giác ABC

\(\Rightarrow IM||AC\)

Qua G kẻ đường thẳng song song AC cắt CD tại P

\(\left\{{}\begin{matrix}G\in\left(IGM\right)\\GP||AC||IM\end{matrix}\right.\) \(\Rightarrow P\in\left(IGM\right)\)

\(\Rightarrow P=CD\cap\left(IGM\right)\)

Theo định lý Talet: \(\dfrac{PC}{PD}=\dfrac{GE}{GD}=\dfrac{1}{2}\)

NV
11 tháng 9 2021

undefined

19 tháng 6 2019

Ta có: 

Ta có ∆ M N P  đồng dạng với ∆ B C D  theo tỉ số

Dựng B ' C '  qua M và song song BC. C ' D '  qua P và song song với CD.

 

Chọn D.

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0