K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-x^2-1}\right)\)

\(=\dfrac{2x^2+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{2x^2+1}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2+1}{x-1}\)

b) Thay \(x=-\dfrac{1}{2}\) vào A, ta được:

\(A=\left(2\cdot\dfrac{1}{4}+1\right):\left(\dfrac{-1}{2}-1\right)\)

\(=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

c) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{2x^2+1}{x-1}-1< 0\)

\(\Leftrightarrow\dfrac{2x^2+1-x+1}{x-1}< 0\)

\(\Leftrightarrow\dfrac{2x^2-x+2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

hay x<1

19 tháng 7 2021

câu c xét hiệu à bạn

17 tháng 7 2023

a) A=2x2+6x-2x2+3x-4x+6+x-2=6x+4
b) x+1=2 => x=1
Tại x=1, A=6*1+4=10
c) A=6x+4=1/2 => x=(1/2-4)/6=-7/12

17 tháng 7 2023

`!`

`a,A=2x(x+3) -(x+2)(2x-3)+x-2`

`= 2x^2 + 6x-(2x^2 -3x+4x-6)+x-2`

`= 2x^2 +6x+2x^2 +3x-4x+6+x-2`

`= (2x^2-2x^2)+(6x+3x-4x+x)+(6-2)`

`=6x+4`

`b, x+1=2`

`=>x=2-1`

`=>x=1`

`A=6x+4` mà `x=1`

Thì `6x+4=6.1+4=10`

`c,` Ta có :

`6x+4=1/2`

`=> 6x=1/2-4`

`=> 6x= -7/2`

`=>x=-7/2 : 6`

`=>x=-7/2 xx1/6`

`=>x= -7/12`

 

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

17 tháng 12 2023

a: \(A=\left(2x-1\right)\left(4x^2+2x+1\right)-7\left(x^3+1\right)\)

\(=\left(2x\right)^3-1^3-7x^3-7\)

\(=8x^3-1-7x^3-7=x^3-8\)

b: Thay x=-1/2 vào A, ta được:

\(A=\left(-\dfrac{1}{2}\right)^3-8=-\dfrac{1}{8}-8=-\dfrac{65}{8}\)

 

17 tháng 12 2023

Con phần C

18 tháng 12 2023

loading...

c: \(A=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

Để A là số nguyên tố thì x-2=1

=>x=3

 

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)

12 tháng 12 2021

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

8 tháng 12 2021

a) \(A=\dfrac{x+2+x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-x+1}{\left(x-2\right)\left(x+2\right)}\)

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2}{x^2-4}\)

a) ĐKXĐ: \(x\notin\left\{0;-\dfrac{1}{2};\dfrac{1}{2}\right\}\)

Ta có: \(A=\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\left(\dfrac{x^2}{2x^2+x}\right)\)

\(=\left(\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{3}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}\right):\left(\dfrac{x^2}{x\left(2x+1\right)}\right)\)

\(=\dfrac{2x+1-3-4x+2}{\left(2x-1\right)\left(2x+1\right)}:\dfrac{x}{2x+1}\)

\(=\dfrac{-2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x}\)

\(=\dfrac{-2}{2x-1}\)

b) Ta có: \(\left|2x-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Thay \(x=\dfrac{3}{2}\) vào biểu thức \(A=\dfrac{-2}{2x-1}\), ta được:

\(A=-2:\left(2\cdot\dfrac{3}{2}-1\right)=-2:\left(3-1\right)=-2:2=-1\)

Vậy: Khi \(\left|2x-1\right|=2\) thì A=-1

c) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{-2}{2x-1}=\dfrac{1}{3}\)

\(\Leftrightarrow2x-1=-6\)

\(\Leftrightarrow2x=-5\)

hay \(x=-\dfrac{5}{2}\)(thỏa ĐK)

Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=-\dfrac{5}{2}\)

4 tháng 2 2021

Cảm ơn bạn nhiều ạ!

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)