K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

Ta có : \(P=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)ĐK : \(x\ge0;x\ne4\)

Thay x = 9 vào P ta được 

\(P=\dfrac{\sqrt{9}+3}{\sqrt{9}-2}=\dfrac{6}{1}=6\)

Với \(x>0;x\ne4\)

\(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{x-4}\)

\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

 

19 tháng 7 2021

đề hỏi gì bạn ? 

a) Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{\sqrt{4x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}\)

\(=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

b) Để P>3 thì \(\sqrt{x}>3\)

hay x>9

Kết hợp ĐKXĐ, ta được: x>9

28 tháng 5 2023

ĐKXĐ: \(x\ge0;x\ne4\)

\(P=\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)

\(=\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+2x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}\left(x+1\right)+2\left(x+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+1}{\sqrt{x}-2}\)

Khi \(x=9+4\sqrt{5}\)

Ta có: \(4+4\sqrt{5}+5=2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(2+\sqrt{5}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{5}\)

\(\Rightarrow P=\dfrac{\left(2+\sqrt{5}\right)^2+1}{2+\sqrt{5}-2}=\dfrac{9+4\sqrt{5}+1}{\sqrt{5}}=\dfrac{10+4\sqrt{5}}{\sqrt{5}}=4+2\sqrt{5}\)

Vậy \(P=4+2\sqrt{5}\) khi \(x=9+4\sqrt{5}\).

\(D=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{x-4}\)

\(=\dfrac{x\sqrt{x}+2x+2}{x-4}\)

Khi x=9+4căn 5 thì \(D=\dfrac{\left(9+4\sqrt{5}\right)\left(\sqrt{5}+2\right)+2\sqrt{5}+4+2}{\sqrt{5}-2}\)

\(=\dfrac{9\sqrt{5}+18+20+8\sqrt{5}+2\sqrt{5}+6}{\sqrt{5}-2}\)

=(44+19căn 5)*(căn 5+2)

=44căn 5+88+95+38căn 5

=82căn 5+183

2 tháng 3 2021

ĐKXĐ x\(\ge0,x\ne1,x\ne4\)

P=

P=\(\left(\dfrac{\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}+\dfrac{x+2\sqrt{x}+4}{x-1}\right):\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)+\sqrt{x}+1+2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

 

P=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{x+2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3\left(x-3\right)}\)

P=\(\dfrac{x-1+\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3\left(x-3\right)}\)

P=\(\dfrac{x\sqrt{x}+x-9}{3\left(x-3\right)}\)

2 tháng 3 2021

\(P=\left(\dfrac{x}{x\sqrt{x}-4\sqrt{x}}-\dfrac{6}{3\sqrt{x}-6}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)

\(P=\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{2\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}-2}{x-4}\right):\left(\dfrac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(P=\left(\dfrac{-6}{x-4}\right):\left(\dfrac{6}{\sqrt{x}+2}\right)=\dfrac{-1}{\sqrt{x}-2}\)

5 tháng 8 2023

a) Thay x=64 vào Q ta có:

\(Q=\dfrac{\sqrt{64}-2}{\sqrt{64}-3}=\dfrac{8-2}{8-3}=\dfrac{6}{5}\)

b) \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)

\(P=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(dpcm\right)\)

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

7 tháng 5 2022

mik cần gấp ạ^^

 

7 tháng 5 2021

câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm

7 tháng 5 2021

1) So sánh:

N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)

M = \(\sqrt{18}-\sqrt{8}\)

\(=3\sqrt{2}-2\sqrt{2}\)

\(=\sqrt{2}\)

Ta có: \(1=\sqrt{1}\)

Mà 1 < 2

\(\Rightarrow\sqrt{1}< \sqrt{2}\)

Hay 1 \(< \sqrt{2}\)

Vậy N < M