A=\(\frac{15^3+5\times15^2-5^3}{18^3+6\times18^2-6^3}\)
B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.......+\frac{1}{3^{2015}}\)
C=\(\left(\frac{1}{2^2}-1\right)\times\left(\frac{1}{3^2}-1\right)\times.........\times\left(\frac{1}{100^2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: F= (100-12) (100-22)...(100-252)
=> F= (100-12)...(100-102)...(100-252)
=> F= (100-12)...0...(100-252)
=> F= 0
Vậy F= 0
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
a) \(C=\frac{\left(\frac{2}{3}\right)^3\times\left(-\frac{3}{4}\right)^2\times\left(-1\right)^5}{\left(\frac{2}{5}\right)^2\times\left(-\frac{5}{12}\right)^2}\)
\(C=\frac{\frac{2^3}{3^3}.\frac{\left(-3\right)^2}{4^2}.\left(-1\right)^5}{\frac{2^2}{5^2}.\frac{\left(-5\right)^2}{12^2}}\)
\(C=\frac{\frac{-\left(2^3.3^2\right)}{3^3.2^4}}{\frac{2^2.5^2}{5^2.2^4.3^2}}\)
\(C=\frac{\frac{-1}{3.2}}{\frac{1}{2^2.3^2}}\)
\(C=\frac{\frac{-1}{6}}{\frac{1}{36}}\)
\(C=-6\)
b) \(D=\frac{6^6+6^3\times3^3+3^6}{-73}\)
\(D=\frac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}\)
\(D=\frac{2^6.3^6+2^3.3^6+3^6}{-73}\)
\(D=\frac{3^6\left(2^6+2^3+1\right)}{-73}\)
\(D=\frac{3^6.73}{\left(-1\right).73}\)
\(D=-3^6=-729\)
=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)
=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)