K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 7 2016
rong hbh ABCD, xét tam giác abc
(1): ac^2 = ab^2 + bc^2- 2.ab.bc.cosB
=> ab^2 + bc^2=ac^2 + 2.ab.bc.cosB
(2): vì da=bc+. da^2 + cd^2 =bc^2 +cd^2
tương tự (1) ta có bc^2 + cd^2 = bd^2+2.bc.cd.cosC
từ (1) và (2), ta có ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 + 2ab.bc.cosB + 2bc.cd.cosC
vì:
- góc B+C=180 => cosC = -cosB
- ab=cd
=>2ab.bc.cosB + 2bc.cd.cosC =0
Vậy => ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 (đpcm)
Xét hình bình hành \(ABCD\)có \(O\)là giao điểm của \(AC\)và \(BD\).
Khi đó \(O\)là trung điểm của \(AC\)và \(BD\).
Độ dài hai đường chéo tỉ lệ với độ dài hai cạnh liên tiếp nên \(\frac{BD}{AC}=\frac{AB}{AD}\Leftrightarrow\frac{DA}{OA}=\frac{AB}{OB}\).
Xét tam giác \(DAB\)và tam giác \(AOB\)có:
\(\widehat{DBA}=\widehat{ABO}\)(góc chung)
\(\frac{DA}{AO}=\frac{AB}{OB}\)(cmt)
Suy ra \(\Delta DAB~\Delta AOB\left(c.g.c\right)\).
suy ra \(\widehat{AOB}=\widehat{DAB}\)(hai góc tương ứng)
Ta có đpcm.