Giúp mik giải với. Hạn 17h hôm nay. Bài thêm 2 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 ,2 mỗi đề í
có 4 đề thì mỗi đề chỉ càn làm bài 1 , bài 2 hoi ..
bạn có thể làm cho mình đc hông ạ
a) Có : AB ⊥ AC tại A ( gt )
CD ⊥ AC tại C ( gt )
=> AB//CD ( Quan hệ từ vuông góc đến song song )
b) Kéo dài CD ( như hình vẽ ).
Có : Góc ACB + Góc C1 = 180o ( Tính chất 2 góc kề bù )
90o + Góc C1 = 180o ( Thay số )
Góc C1 = 90o
Có : Góc C1 + Góc C2 = Góc ACE ( Tính chất cộng góc )
90o + Góc C2 = 140o ( Thay số )
90o + Góc C2 = 50o
Có : Góc C2 + Góc CEF = 50o + 130o = 180o
Mà 2 góc này nằm ở vị trí phía trong cùng.
=> CD//EF ( dhnb )
Bài 5:
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}\approx90^0-37^0=53^0\)
b, Áp dụng HTL: \(S_{AHC}=\dfrac{1}{2}AH\cdot HC=\dfrac{1}{2}\cdot\dfrac{AB\cdot AC}{BC}\cdot\dfrac{AC^2}{BC}=\dfrac{1}{2}\cdot\dfrac{12}{5}\cdot\dfrac{9}{5}=\dfrac{54}{25}\left(cm^2\right)\)
c, Vì AD là p/g nên \(\dfrac{DH}{DB}=\dfrac{AH}{AB}\)
Mà \(AC^2=CH\cdot BC\Leftrightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)
Mà \(AH\cdot BC=AB\cdot AC\Leftrightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\)
Vậy \(\dfrac{DH}{DB}=\dfrac{HC}{AC}\)
4:
a: Xét ΔEFA và ΔAMC có
góc EFA=góc AMC(=góc EIM)
góc EAF=góc ACM
=>ΔEFA đồng dạng với ΔAMC
=>EF/AM=EA/AC
=>EF*AC=AM*EA
b: ΔEFA đồng dạng với ΔAMC
=>S EFA/S AMC=(EF/AM)^2=1/9
=>S EFA=1/9*S AMC
mà S AMC=1/2*S ABC
nên S EFA=1/9*1/2*S ABC=1/18*S ABC
Bài 1 :
a) \(1-\left(5\frac{3}{8}+x-6\frac{5}{24}\right):12\frac{2}{5}=0\)
\(\Rightarrow\left(\frac{43}{8}+x-\frac{149}{24}\right):\frac{62}{5}=1\)
\(\Rightarrow\left(\frac{129}{24}-\frac{149}{24}\right)+x=\frac{62}{5}\)
\(\Rightarrow\frac{-5}{6}+x=\frac{62}{5}\)
\(\Rightarrow x=\frac{62}{5}-\frac{-5}{6}=\frac{397}{30}\)
Xin lỗi , mình không biết làm phần c bài 1
Bài 2 :
Ta có : \(A=\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{10}\)
\(\Rightarrow7A=-1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^9\)
\(\Rightarrow7A-A=\left[-1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^9\right]-\left[\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{10}\right]\)
\(\Rightarrow6A=-1-\left(\frac{-1}{7}\right)^{10}\Rightarrow A=\frac{-1-\left(\frac{-1}{7}\right)^{10}}{6}\)