K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

vào câu hỏi tương tự nha

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

31 tháng 1 2017

a,n3+6n2+8n=n3+2n2+4n2+8n=n2(n+2)+4n(n+2)=(n+2)(n2+4n)=n(n+2)(n+4)

dễ thấy đây là tích 2 số chẵn liên tiếp ,trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 4 

=>n(n+2)(n+4) chia hết cho 16

n chẵn nên n chia 3 dư 1 hoặc n chia 3 dư 2

+n chia 3 dư 1 => n+2 chia hết cho 3

+n chia 3 dư 2 =>n+4 chia hết cho 3

=> n(n+2)(n+3) chia hết cho 3

Tóm lại n3+6n2+8n chia heêtt1 cho 3.16=48

31 tháng 1 2017

hình như mk làm chưa logic lắm,để làm lại:

Vì n chẵn =>n=2k

n3+6n2+8n=(2k)3+6(2k)2+8.2k=8k3+24k2+16k=8k(k2+3k+2)=8k(k+1)(k+2)

Vì k,k+1,k+2 là 3 SN liên tiếp nên tích của chúng chia hết cho 2 và 3 ,mà (2;3)=1 =>tích của chúng cũng chia hết cho 6

=>8k(k+1)(k+2) chia hết cho 8.6=48

31 tháng 1 2017

a)\(n^3+6n^2+8n=n\left(n+2\right)\left(n+4\right)\)

đầu tiên bạn chứng minh nó chia hết cho 16, rồi chia hết cho 3, gộp lại thành ra chia hết cho 48, mình ngại ghi lắm :v

b)\(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)

<=>\(a^2+2a+b^2-2b-2ab=63\)

<=>\(\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=63\)

<=>\(\left(a-b\right)^2+2\left(a-b\right)=63\)

<=>\(\left(a-b\right)\left(a-b+2\right)=63=7.9\)

<=> a - b = 7

1 tháng 7 2017

Tra trước khi hỏi nhá!

Câu hỏi của yen hai

Chúc bạn học tốt!!!

2 tháng 7 2017

Cảm ơn bạn!

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

30 tháng 7 2015

n chẵn => n = 2k (k \(\in\)N)

n3 + 6n+ 8n = (2k)+ 6.(2k)2 + 8.(2k) = 8k3 + 24.k+ 16k = 8k. (k+ 3k + 2) = 8k.(k+ 2k + k + 2)

= 8k. [k(k +2) + (k+2)] = 8k.(k+1).(k+2)

Nhận xét: k; k+1; k+ 2 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6

=>  8k.(k+1).(k+2) chia hết cho 8.6 = 48

=> n3 + 6n+ 8n chia hết cho 48

7 tháng 11 2019

ko bk lam

21 tháng 10 2017

b) n3 + 6n2 + 8n

= n( n2 + 6n + 8)

= n( n2 + 2n + 4n + 8)

= n[ n( n +2) + 4( n +2)]

= n( n +2)( n + 4)

Do n chẵn nên ta đặt : 2k = n

Ta có : 2k( 2k +2)( 2k +4)

= 2k.2( k +1)2( k +2)

= 8k( k + 1)( k +2)

Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3

Suy ra : k( k + 1)( k +2) chia hết cho 6

Suy ra : 8k( k + 1)( k +2) chia hết cho 48


16 tháng 3 2019

a) 24= 2.3.4

(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)

=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)

Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4

Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4