K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

Bài 1.

Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)

\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)   (1)

Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)

\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)

\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)          (2)

Cộng vế với vế của (1) và (2) ta có:

\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)

\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Bài 2: 

Ta có: (2a+1)(2b+1)=9

nên \(2b+1=\dfrac{9}{2a+1}\)

\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)

\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)

\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)

Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)

\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)

\(=\dfrac{3+2a+1}{3a+6}\)

\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)

NV
6 tháng 2 2021

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

6 tháng 2 2021

yeu

27 tháng 6 2021

`(x+sqrt{x^2+2020})(sqrt{x^2+2020}-x)=x^2+2020-x^2=2020`

`=>y+sqrt{y^2+2020}=sqrt{x^2+2020}-x`

`<=>x+y=sqrt{x^2+2020}-sqrt{y^2+2020}`

Tương tự:`x+y=sqrt{y^2+2020}-sqrt{x^2+2020}`

Cộng từng vế

`=>2(x+y)=0`

`<=>S=0+2020=2020`

27 tháng 6 2021

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\) (1)

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(y-\sqrt{y^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)

\(\Leftrightarrow\left(y^2-y^2-2020\right)\left(x+\sqrt{x^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)

\(\Leftrightarrow-x-\sqrt{x^2+2020}=y-\sqrt{y^2+2020}\) (2)

Từ (1) (2) cộng vế với vế \(\Rightarrow-\left(x+y\right)-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)=x+y-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

\(S=x+y+2020=2020\)

22 tháng 11 2023

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

22 tháng 11 2023

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

NM
10 tháng 1 2021

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)

NV
13 tháng 12 2020

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Đề sai. Nếu $x,y$ đều âm thì điều kiện $xy> 2020x+2020y$ được thỏa mãn nhưng hiển nhiên $x+y$ không thể lớn hơn $(\sqrt{2020}+\sqrt{2021})^2$

20 tháng 9 2021

nếu x,y dương

 thì sao Akai Haruma ?

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.