K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD(gt)

Do đó: ΔCHA=ΔCHD(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

HA=HD(gt)

Do đó: ΔBHA=ΔBHD(Hai cạnh góc vuông)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔCAB và ΔCDB có 

CA=CD(cmt)

CB chung

BA=BD(cmt)

Do đó: ΔCAB=ΔCDB(c-c-c)

Suy ra: \(\widehat{CAB}=\widehat{CDB}\)(hai góc tương ứng)

hay \(\widehat{CDB}=90^0\)(đpcm)

11 tháng 7 2021

Xét tam giác ACH và tam giác DCH có:

H=90o(gt)

CH chung(gt)

AH=HD(gt)

=> 2 tam giác = nhau(2 cạnh gv)

=> C1=C2 (2 góc tương ứng)

=> CA=CD( 2 cạnh tương ứng)

Xét tam giác ACB và tam giác CDB có:

C1=C2(cmt)

CA=CD (cmt)

CB chung(gt)

=> 2 tam giác= nhau( cgc)

=> A=D=90o(2 cạnh tương ứng)

tick mk nhé

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

16 tháng 12 2023

a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

=>\(HB^2=6^2-4,8^2=12.96\)

=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\)

=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)

Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)

=>\(AC^2+6^2=10^2\)

=>\(AC^2=100-36=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD

nên ΔAHD vuông cân tại H

Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)

nên IDBA là tứ giác nội tiếp

=>\(\widehat{AIB}=\widehat{ADB}=45^0\)

Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)

nên ΔAIB vuông cân tại A

=>AI=AB

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

a: Xét ΔHAD vuông tại H và ΔBCD vuông tại B có

\(\widehat{HDA}=\widehat{BDC}\)

Do đó; ΔHAD~ΔBCD

b: ta có; ΔHAD~ΔBCD

=>\(\widehat{BCD}=\widehat{HAD}\)

mà \(\widehat{BCD}=\widehat{ACD}\)

nên \(\widehat{HAD}=\widehat{ACD}\)

Xét ΔHAD vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAD}=\widehat{HCA}\)

Do đó: ΔHAD~ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HD}{HA}\)

=>\(HA^2=HD\cdot HC\)

c: Ta có: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=10^2-6^2=64\)

=>\(BC=\sqrt{64}=8\left(cm\right)\)

Xét ΔCBA có CD là phân giác

nên \(\dfrac{BD}{BC}=\dfrac{DA}{CA}\)

=>\(\dfrac{BD}{8}=\dfrac{DA}{10}\)

=>\(\dfrac{BD}{4}=\dfrac{DA}{5}\)

mà BD+DA=BA=6cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{DA}{5}=\dfrac{BD+DA}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)

=>\(DA=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)