Mọi người giải giúp mình bài này với:
Tìm x:
5x + 5x+1 = 150
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-.-? lớp 6
Có \(\left(5x-7\right)\left(2x+3\right)-\left(7x+2\right)\left(x-4\right)\)
\(=10x^2+15x-14x-21-7x^2+28x-2x+8\)
\(=\left(10x^2-7x^2\right)+\left(15x-14x+28x-2x\right)+\left(-21+8\right)\)
\(=3x^2+27x-13\)
Thay x = 1/2 vào biểu thức đã rút gọn
\(\Rightarrow3\left(\frac{1}{2}\right)^2+27.\frac{1}{2}-13=\frac{5}{4}\)
Vậy giá trị biểu thức là 5/4
(5x-7)(2x+3)-(7x+2)(x-4)
=10x2+15x-14x-21-(7x2-7x+2x-8)
=10x2-x-21-7x2+7x-2x+8
=3x2+4x-13
Thay x=1/2 vào BT ta được:
3*(1/2)2+4*1/2-13
=3/4+2-13
=3/4-11
=-41/4
\(5^{x+1}+5^{x-1}=130\)
\(5^x\cdot5^1+5^x\div5^1=130\)
\(5^x\cdot5^1+5^x\cdot\dfrac{1}{5}=130\)
\(5^x\cdot\left(5+\dfrac{1}{5}\right)=130\)
\(5^x\cdot\dfrac{26}{5}=130\)
\(5^x=130\div\dfrac{26}{5}\)
\(5^x=130\cdot\dfrac{5}{26}\)
\(5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Mọi người còn câu trả lời nào khác không cứ trả lời đi mik tick cho
a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)
b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)
\(\Rightarrow-\frac{7}{10}x=-1\)
\(\Rightarrow x=\frac{10}{7}\)
c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)
a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0
Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0
Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5
x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)
x = 14/3 hoặc x = -3
b, 1/10 .x - 4/5 .x + 1 =0
x . (1/10 - 4/5) + 1 = 0
x . (-7/10) + 1 = 0
x . -7/10 =0 +1 = 1
x = 1 : (-7/10)
x = -10/7
c, (2x - 1/3 ) . (5x +2/7) = 0
Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0
Vậy : 2x = 1/3 hoặc 5x = 2/7
x = 1/3 : 2 hoặc x = 2/7 : 5
x = 1/6 hoặc x = 2/35
\(A=\dfrac{x}{\left(x+2022\right)^2}=\dfrac{x}{x^2+4044x+2022^2}=\dfrac{1}{x+4044+\dfrac{2022^2}{x}}=\dfrac{1}{\left(x+\dfrac{2022^2}{x}\right)+4044}\le\dfrac{1}{2.\sqrt{x}.\sqrt{\dfrac{2022^2}{x}}+4044}=\dfrac{1}{2..\sqrt{\dfrac{x.2022^2}{x}}+4044}=\dfrac{1}{4044+4044}=\dfrac{1}{8088}\)-\(A_{max}=\dfrac{1}{8088}\Leftrightarrow x=2022\)
10x(-4x-7)+8x(5x+5)= -60
=>-40x2-70x+40x2+40x=-60
=>-30x=-60
=>x=2
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
Bài 1:
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2-4x^2+4x-1=0\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)
Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.