K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\forall x\in R\)

Vậy BPT có tập nghiệm là \(R\)

16 tháng 7 2017

Căn bậc hai

17 tháng 7 2017

lập bảng xét dấu là xong bn ak

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

24 tháng 2 2022

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

10 tháng 4 2018

* Biểu diễn nghiệm trên trục số :

Bất phương trình bậc nhất một ẩn

10 tháng 4 2018

a) 1,2x < -6

\(\Leftrightarrow1,2x.\dfrac{1}{1,2}< -6.\dfrac{1}{1,2}\)

\(\Leftrightarrow\) \(\dfrac{1,2x}{1,2}< \dfrac{-6}{1,2}\)

\(\Leftrightarrow x< -5\)

Vậy nghiệm của BPT là : \(x< -5\)

b) \(3x+4>2x+3\)

\(\Leftrightarrow3x-2x>-4+3\)

\(\Leftrightarrow x>-1\)

Vậy nghiệm của BPT là : \(x>-1\)

c) \(2x-3>0\)

\(\Leftrightarrow2x>3\)

\(\Leftrightarrow2x.\dfrac{1}{2}>3.\dfrac{1}{2}\)

\(\Leftrightarrow x>1,5\)

Vậy nghiệm của BPT là : \(x>1,5\)

d) \(4-3x\le2\)

\(\Leftrightarrow-3x\le2-4\)

\(\Leftrightarrow-3x\le-2\)

\(\Leftrightarrow-3x.\dfrac{-1}{3}\ge-2.\dfrac{-1}{3}\)

\(\Leftrightarrow x\ge\dfrac{2}{3}\)

Vậy tập nghiệm của BPT là : \(x\ge\dfrac{2}{3}\)