K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

1/1*2+1/3*4+1/5*6+....+1/199*200

[1

7 tháng 10 2021

\(A=\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{39800}\)

\(=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{199\times200}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=1-\dfrac{1}{200}=\dfrac{199}{200}\)

\(A=\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{39800}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=\dfrac{199}{200}\)

18 tháng 3 2021

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

17 tháng 2 2017

mk mới lớp 6 thui bạn ạ

17 tháng 2 2017

////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????không biết

11 tháng 3 2017

Bài 1:

Ta có: \(\frac{1}{51}>\frac{1}{100}\)

           \(\frac{1}{52}>\frac{1}{100}\)

......

             \(\frac{1}{99}>\frac{1}{100}\)

Công vế với vế lại ta được:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)        (1)

Lại có: \(\frac{1}{51}< \frac{1}{50}\)

            \(\frac{1}{52}< \frac{1}{50}\)

.....

             \(\frac{1}{100}< \frac{1}{50}\)

Cộng vế với vế lại ta được:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\)             (2)

Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)

11 tháng 3 2017

Bài 2:

Đặt S = 1/41 + 1/42 +...+ 1/80

S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng

Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)\(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)\(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)

=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)

=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)

=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)

25 tháng 11 2017

Ta có: \(C=\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{51.52}\)C bé hơn\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{50.52}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{52}\right)\)

C bé hơn \(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{52}\right)\)bé hơn\(\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)(đpcm)

xin lỗi nha mk ko biết viết kí hiệu bé hơn

25 tháng 11 2017

mik cảm ơn nha