Cho đoạn thẳng AB vẽ đường tròn tâm A bán kính AB và đuong tròn B bán kính BA hai đường tròn cắt nhau tại MN
a) chứng minh tam giác AMB = tam giác ANB
b)MN là đuong trung trực từ đó suy ra cách vẽ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: Lần lượt lấy A và B làm tâm, ta quay hai cung tròn với bán kính R( Lưu ý R>1/2AB) Hai cung tròn (A;r) và (B;r) cắt nhay tại hai điểm M và M' b2: Nối MM' ta được đường trung trực MM' của đoạn thẳng AB.
a) Xét tam giác NMA và NMB có:
\(MA=MB\left(gt\right)\)
\(NM\) là cạnh chung.
\(NA=NB\) (đường tròn tâm A và B cùng bán kính cắt nhau)
\(\Rightarrow\Delta NMA=\Delta NMB\left(c.c.c\right)\) (1)
b) Vì \(\widehat{NMA}=\widehat{NMB}\) (từ 1) và 2 góc trên là 2 góc kề bù nên \(\widehat{NMA}=\widehat{NMB}=90^o\)
Vậy \(NM\perp AB\)
c) \(NA=NB\) (từ 1)
\(BM=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Chu vi tam giác NMB:
\(10+8+6=24\left(cm\right)\)
a)Vì M và N thuộc đường tròn tâm A bán kính AB
=> AM=AN=AB
Vì M và N thuộc đường tròn tâm B bán kính BA
=> BM=BN=BA
Vậy AM=AN=BM=BN=AB
Xét ∆AMB và ∆ANB
AM=AN
BM=BN
AB cạnh chung
Vậy ∆AMB=∆ANB(c.c.c)
b) Vì MA=MB nên M thuộc trung trực của AB
Vì NA=NB nên N thuộc trung trực của AB
Vậy MN là đường trung trung trực của AB.
Cách vẽ:
B1: Lần lượt lấy A và B làm tâm, ta quay hai cung tròn với bán kính R( Lưu ý R>1/2AB)
Hai cung tròn (A;r) và (B;r) cắt nhay tại hai điểm M và M'
b2: Nối MM' ta được đường trung trực MM' của đoạn thẳng AB.