K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2022

\(-x^2+4x-8\)

\(=-\left(x^2-4x+4\right)-4\)

\(=-\left(x-2\right)^2-4\)

Mà \(-\left(x-2\right)\le0\Rightarrow-\left(x-2\right)^2-4\le-4\)

Vậy giá trị nhỏ nhất của biểu thức \(-x^2+4x-8=-4\Leftrightarrow x=2\)

19 tháng 8 2018

a) A = (2x + 1)/(x² + 2) 
Tìm min 
ta có: A = (2x + 1)/(x² + 2) 
=> 2A = (4x + 2)/(x² + 2) 
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2) 
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2) 
= [ (x + 2)² - (x² + 2) ]/(x² + 2) 
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2) 
= (x + 2)²/(x² + 2) - 1 
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0 
=> (x + 2)²/(x² + 2) ≥ 0 
=> (x + 2)²/(x² + 2) - 1 ≥ -1 
=> 2A ≥ -1 
=> A ≥ -1/2 
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0 
<=> (x + 2)² = 0 
<=> x + 2 = 0 
<=> x = -2 

Tìm max: A = (2x + 1)/(x² + 2) 
= (2x + 2 - 1 + x² - x²)/(x² + 2) 
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2) 
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2) 
= [ (x² + 2) - (x - 1)² ]/(x² + 2) 
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2) 
= 1 - (x - 1)²/(x² + 2) 
Do (x - 1)² ≥ 0 và (x² + 2) > 0 
=> (x - 1)²/(x² + 2) ≥ 0 
=> -(x - 1)²/(x² + 2) ≤ 0 
=> 1 - (x - 1)²/(x² + 2) ≤ 1 
=> A ≤ 1. 
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0 
<=> -(x - 1)² = 0 
<=> (x - 1)² = 0 
<=> x - 1 = 0 
<=> x = 1. 

b) Tìm min: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1) 
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1) 
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1) 
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - 1 
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0 
=> (2x + 2)²/(4x² + 1) ≥ 0 
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1 
=> B ≥ -1 
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0 
<=> (2x + 2)² = 0 
<=> 2x + 2 = 0 
<=> 2x = -2 
<=> x = -1. 

Tìm max: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1) 
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1) 
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1) 
= 4 - (4x - 1)²/(4x² + 1) 
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4 

c) tìm min: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1) 
= [ (x² + 1) + (x + 1)² ]/(x² + 1) 
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1) 
Lập luận tương tự để tìm ra min C = 1 <=> x = -1 

tìm max: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= (3x² - x² + 2x + 3 - 1)/(x² + 1) 
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1) 
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1) 
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1

19 tháng 8 2018

\(\text{B = x^2 -4x+8 }\)

\(B=x^2-2.x.2+4+\)

\(B=\left(x-2\right)^2+4\)

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+4\ge4\forall x\)

Dấu "=" xra khi x=2

Vậy Min B = 4 khi x=2

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

\(\frac{1}{G}=\frac{2x-5\sqrt{x}+18}{\sqrt{x}}=2\sqrt{x}-5+\frac{18}{\sqrt{x}}\)

\(=2\sqrt{x}+\frac{18}{\sqrt{x}}-5\geq 2\sqrt{2.18}-5=7\) theo BĐT AM-GM

\(\Rightarrow G\leq \frac{1}{7}\) 

Vậy \(G_{\max}=\frac{1}{7}\Leftrightarrow x=9\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

\(\frac{1}{K}=\frac{x-2\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}\)

\(=\frac{4\sqrt{x}}{9}+\frac{4}{\sqrt{x}}+\frac{5\sqrt{x}}{9}-2\)

\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{9}}{9}-2=\frac{7}{3}\) (theo BĐT AM-GM)
\(\Rightarrow K\leq \frac{3}{7}\)

Vậy \(K_{\max}=\frac{3}{7}\Leftrightarrow x=9\)

 

14 tháng 12 2018

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)

\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)

Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)

Vậy: Pmin=-36 <=> x E {0;-5}

14 tháng 12 2018

CHờ tí mk lm câu b

21 tháng 10 2020

a) 4x2 + y2 + 4xy + 4x + 2y + 3

= ( 4x2 + 4xy + y2 + 4x + 2y + 1 ) + 2

= [ ( 4x2 + 4xy + y2 ) + ( 4x + 2y ) + 1 ] + 2

= [ ( 2x + y )2 + 2( 2x + y ).1 + 12 ] + 2

= ( 2x + y + 1 )2 + 2 ≥ 2 ∀ x, y

Dấu "=" xảy ra <=> 2x + y + 1 = 0

                        <=> 2x = -y - 1

                        <=> x = \(\frac{-y-1}{2}\)

Vậy GTNN của biểu thức = 2 <=> x = \(\frac{-y-1}{2}\)

b) -x2 - y2 - 2xy 

= -( x2 + 2xy + y2 )

= -( x + y )2 ≤ 0 ∀ x, y

Dấu "=" xảy ra khi x = -y

Vậy GTLN của biểu thức = 0 <=> x = -y

23 tháng 12 2017

GTNN :\(C=\frac{2x^2+2x+2}{x^2+1}=\frac{\left(x^2+1\right)+\left(x^2+2x+1\right)}{x^2+1}=1+\frac{\left(x+1\right)^2}{x^2+1}\ge1\)

GTLN :\(C=\frac{2x^2+2x+2}{x^2+1}=\frac{3\left(x^2+1\right)-\left(x^2-2x+1\right)}{x^2+1}=3-\frac{\left(x-1\right)^2}{x^2+1}\le3\)

7 tháng 7 2017

a)

-x2+x+1=-(x2-x-1)=\(-\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{5}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\Leftrightarrow-x^2+x+1\le\frac{5}{4}\)

Dấu "=" xảy ra khi (x-1/2)2=0 => x-1/2=0 => x=1/2

Vậy max của biểu thức -x2+x+1 là 5/4 khi x=1/2

b) câu này trình bày tương tự câu trên thôi

\(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi x=-1/2