K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

Ta có: \(a^2+4b=b^2+4a\) <=> \(a^2-b^2-4a+4b=0\)

<=> \(\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)

<=> \(\left(a-b\right)\left(a+b-4\right)=0\)

<=> \(\orbr{\begin{cases}a=b\left(loại\right)\\a+b=4\end{cases}}\)(vì a,b phân biệt)

a ) => S = a + b = 4

b) Ta có: \(a^2+4b=7\) <=> \(a\left(a+b\right)-ab+4b=7\)

<=> \(4a-ab+4b=7\) <=> \(4\left(a+b\right)-7=ab\) <=> \(ab=4.4-7=9\)

Do đó: Q = a3 + b3 = (a + b)(a2  -  ab + b2) = (a + b)3 - 3ab(a + b) = 43 - 3.9.4 = -44

20 tháng 7 2020

a^2+4b=b^2+4a

=> (a-b)(a+b)-4(a+b)=0

=>(a-b-4)(a+b)=0

Đến đây đơn giản mà ^^ em ko làm được thì ib nhé.

20 tháng 7 2020

Bài làm:

Ta có: \(a^2+4b=b^2+4a\)

\(\Leftrightarrow\left(a^2-b^2\right)-\left(4a-4b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a+b-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=0\\a+b=4\end{cases}}\)

+ Nếu \(a=0\Rightarrow4b=7\Leftrightarrow b=\frac{7}{4}\)

Thay vào tính được:

a) \(S=a+b=0+\frac{7}{4}=\frac{7}{4}\)

b) \(Q=a^3+b^3=0^3+\left(\frac{7}{4}\right)^3=\frac{343}{64}\)

Nếu \(a+b=4\Rightarrow b=4-a\)

Thay vào tính được:

a) \(S=a+b=4\)

b) \(b=4-a\Leftrightarrow a^2+4\left(4-a\right)=7\)

\(\Leftrightarrow a^2-4a+9=0\)

\(\Leftrightarrow\left(a-2\right)^2+5=0\)

\(\Rightarrow∄a\)

23 tháng 11 2019

Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

29 tháng 5 2017

Giải: Ta có:

\(\frac{1}{4}\left(a+b\right)=a^2+b^2-ab\ge\left(a+b\right)^2-3\frac{\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}\)

\(\Rightarrow0\le a+b\le1\)

Mặt khác: \(A\le20\left(a+b\right)\left(a^2+b^2-ab\right)-6\frac{\left(a+b\right)^2}{2}+2013\)

\(\Rightarrow A\le20\left(a+b\right)\frac{a+b}{4}-3\left(a+b\right)^2+2013=2\left(a+b\right)^2+2013\le2015\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Vậy \(A_{max}=2015\Leftrightarrow a=b=\frac{1}{2}\)

28 tháng 5 2017

Từ biểu thức A ta suy ra để A max thì a, b không âm.

Từ Giả thiết ta suy ra a + b = 4(a2 - ab + b2) hay (a + b)2 = 4(a3 + b3). Thế vào A ta được:

A = 5(a + b)2 - 6(a2 + b2) + 2013 = -(a2 + b2) + 10ab + 2013 = -(a - b)2 + 8ab + 2013.

Từ GT ta cũng suy ra a + b \(\ge\)4ab nên A \(\le\)-(a - b)2 + 2(a + b) + 2013 \(\le\) 2013.

dấu "=" xảy ra khi a = b = 0. Vậy Max A = 2013 khi a = b = 0.

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:
$a^4-4a=b^4-4b$

$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$

$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$

$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$

$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)

$\Rightarrow (a+b)(a^2+b^2)=4>0$

Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$

Mặt khác:

Áp dụng BĐT AM-GM:

$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$

$\Rightarrow 8> (a+b)^3$

$\Rightarrow 2> a+b$

Vậy $0< a+b< 2$ 

Ta có đpcm.

 

NV
21 tháng 7 2020

\(a^2+4b=a^2+4a\Leftrightarrow a^2-b^2+4b-4a=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-4\right)=0\)

\(\Rightarrow a+b-4=0\Rightarrow a+b=4\)

b/ \(Q=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=4^3-12ab=64-12ab\)

Lại có: \(\left\{{}\begin{matrix}a^2+4b=7\\b^2+4a=7\end{matrix}\right.\) \(\Rightarrow a^2+b^2+4\left(a+b\right)=14\)

\(\Rightarrow\left(a+b\right)^2-2ab+4\left(a+b\right)=14\)

\(\Rightarrow16-2ab+16=14\Rightarrow ab=9\)

\(\Rightarrow Q=64-12.8=-32\)

23 tháng 11 2019

\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}.\)

TH1: \(a+b+c=0\)

=> \(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)

=> a + b - 7 + b + c + 3 - a - c - 4 =0 

=> 2b -8 =0

=>  2b = 4 

=> b = 2.

=> a = 5; c = - 5

=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017 ( -5) = -9963.

TH2: a + b + c khác 0.

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)

\(=\frac{a+b-7+b+c+3+a+c+4}{4c+4a+4b}=\frac{2a+2b+2c}{4a+4b+4c}=\frac{1}{2}\)(1)

=> \(\hept{\begin{cases}a+b-7=2c\\b+c+3=2a\\a+c+4=2b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c+7\left(1\right)\\b+c=2a-3\left(2\right)\\a+c=2b-4\left(3\right)\end{cases}}\)

Từ (1) => \(a+b+c=1\left(4\right)\)

Từ (1); (4) => 2c + 7 + c = 1 => 3c = -6 => c = -2

Từ (2); (4) => 2a - 3 + a = 1 => 3a = 4  => a = 4/3

Từ (3); (4) => 2b - 4 + b = 1 => 3b = 5 => b = 5/3

=>  A = 20a + 11b + 2017c = \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\)