Bài 1: Trên đường thẳng xy lấy bốn điểm A, B, C, D theo thứ tự đó. Gọi M là điểm nằm ngoài đường thẳng xy, kẻ các đoạn thẳng MA, MB, MC, MD. Đoạn MB là cạnh chung của những tam giác nào?
Bài 2 : Cho điểm M không thuộc đường thẳng xy. Lấy 2 điểm A, B trên xy thì tồn tại một tam giác có đỉnh là điểm M và 2 đỉnh còn lại là 2 điểm A, B. Nếu có thêm một điểm thứ ba cũng thuộc đường thẳng xy thì vẽ được bao nhiêu tam giác có đỉnh là M và hai đỉnh còn lại là 2 điểm trong số 3 điểm thuộc đường thẳng xy?
Bài 3 : Trên đường thẳng xy lấy bốn điểm A, B, C, D theo thứ tự đó. Gọi M là điểm nằm ngoài đường thẳng xy, kẻ các đoạn thẳng MA, MB, MC, MD. Hai tam giác nào có hai góc kề bù nhau?
Bài 4 : Cho năm điểm A, B, C, D, E nằm trên một đường tròn. Nối từng cặp hai điểm. Vẽ được tất cả bao nhiêu tam giác ?
Tìm các tam giác chứa cạnh MB, đó là: MBA; MBC; MBD
2) Nối M với 1 cặp điểm trên xy ta được 1 tam giác
Nếu trên xy có 3 điểm, ta được 3 cặp điểm phân biệt => ta được 3 tam giác có 1 đỉnh là M và 2 đỉnh còn lại là 2 trong số 3 điểm thuộc xy
3) Sử dụng hình của bài 1:
Để tìm 2 tam giác có 2 góc kề bù nhau, ta tìm các cặp góc kề bù nhau
+) Góc MBA và MBC ( hay MBD) => cặp tam giác MBA và MBC ; MBA và MBD
+) Góc MCB (hay MCA) và MCD => cặp tam giác MCB và MCD ; MCA và MCD
4) A; B; C; D; E nằm trên cùng một đường tròn nên trong năm điểm không có 3 điểm nào thẳng hàng
- Đỉnh A nối với 2 đỉnh còn lại trong 4 đỉnh ta được 6 tam giác (ABC; ABD; ABE; ACD; ACE; ADE)
Có 5 đỉnh => có 6.5 = 30 tam giác
Trong đó mỗi tam giác được tính 3 lần ( Tam giác ABC; BCA; CAB là một tam giác)
=> Các tam giác vẽ được là: 30 : 3 = 10 tam giác