K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

$\dfrac{4}{1.4}+\dfrac{5.9}+....+\dfrac{4}{2001.2005}$
$=1+\dfrac15-\dfrac19+....+\dfrac{1}{2001}-\dfrac{1}{2005}$
$=1-\dfrac{1}{2005}=\dfrac{2004}{2005}$

6 tháng 7 2021

 \(\dfrac{4}{1.4}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)

\(=1+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\)

\(=1+\dfrac{1}{5}-\dfrac{1}{2005}\)

\(=1+\dfrac{401}{2005}-\dfrac{1}{2005}\)

\(=1+\dfrac{400}{2005}=1+\dfrac{80}{401}=\dfrac{481}{401}\)

a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)

b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)

c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)

d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

1 tháng 3 2022

đề bài là j

29 tháng 3 2017

\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{17\cdot21}< 1\)

\(A=\dfrac{4}{4}\cdot\left(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{17\cdot21}\right)< 1\)

\(A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}< 1\)

\(A=1-\dfrac{1}{21}< 1\) (đúng) (đpcm).

29 tháng 3 2017

Đề sai

2 tháng 4 2017

\(-\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}...+\dfrac{4}{n\left(n+4\right)}\right)\) \(=-\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{n}+\dfrac{1}{n+4}\right)=-\left(1-\dfrac{1}{n+4}\right)=-1+\dfrac{1}{n+4}\)

27 tháng 3 2017

Theo quy luật thì mình nghĩ đáng lẽ \(\dfrac{4}{5.9}\)phải là\(\dfrac{4}{7.9}\)Bạn có chép sai đề ko?

27 tháng 3 2017

A=1-\(\dfrac{4}{5.7}-\dfrac{4}{7.9}-\dfrac{4}{9.11}...-\dfrac{4}{59.61}\)

A=\(1-\left(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\right)\)

Đặt B=\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\)

B=\(2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\right)\)
B=\(2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
B=\(2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=2.\dfrac{56}{305}\)
B=\(\dfrac{112}{305}\)
\(\Rightarrow A=1-\dfrac{112}{305}=\dfrac{193}{305}\)

1 tháng 10 2023

\(\dfrac{4^5\cdot9^4}{8^3\cdot27^3}=\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4}{\left(2^3\right)^3\cdot\left(3^3\right)^3}=\dfrac{2^{10}\cdot3^8}{2^9\cdot3^9}=\dfrac{2}{3}\)

\(\dfrac{4^{20}\cdot3^{35}}{2^{37}\cdot27^{12}}=\dfrac{\left(2^2\right)^{20}\cdot3^{35}}{2^{37}\cdot\left(3^3\right)^{12}}=\dfrac{2^{40}\cdot3^{35}}{2^{37}\cdot3^{36}}=\dfrac{2^3}{3}\)

\(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^5\cdot5^5\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{100}\)

\(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=3^2\)

24 tháng 12 2024

cảm ơn

nha❤

20 tháng 12 2022

a: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=\dfrac{-1}{3}\)

b: \(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)

25 tháng 3 2017

\(x+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{41.45}=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{44}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\dfrac{8}{45}=-\dfrac{37}{45}\\ x=-\dfrac{37}{45}-\dfrac{8}{45}\\ x=-1\)

30 tháng 3 2017

bạn học nhà cô Phương à

a) Ta có: \(A=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+\dfrac{4}{7\cdot10}+...+\dfrac{4}{31\cdot34}\)

\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{31\cdot34}\right)\)

\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)

\(=\dfrac{4}{3}\left(1-\dfrac{1}{34}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{33}{34}=\dfrac{22}{17}\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

\(2A=\frac{4}{1.5}+\frac{6}{5.11}+\frac{8}{11.19}+\frac{10}{19.29}+\frac{12}{29.41}\)

\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{19}+...+\frac{1}{29}-\frac{1}{41}=1-\frac{1}{41}=\frac{40}{41}\)

\(\Rightarrow A=\frac{20}{21}\)

\(3B=\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}\)

\(=1-\frac{1}{31}=\frac{30}{31}\)

\(\Rightarrow B=\frac{10}{31}=\frac{20}{62}<\frac{20}{41}\)

Do đó $A>B$

13 tháng 5 2021

C ưi , c hỗ trợ câu em mới gửi vào inb nhé