Tìm số tự nhiên 𝑚 thỏa mãn: 9000 < 𝑚 < 10000 sao cho 𝑚 chia cho 95 dư 25, 𝑚
chia cho 97 dư 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=1;b=-1;c=m-1\)
a) Để phương trình đã cho có nghiệm thì \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(m-1\right)=1-4m+4=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)
b) Gọi các nghiệm của phương trình đã cho là x1, x2.
Theo định lí Vi-ét, ta có: \(x_1+x_2=-\frac{b}{a}=-\frac{-1}{1}=1\)
Vậy tổng các nghiệm của phương trình đã cho là 1.
Để đồ thị hai hàm số là các đường thẳng song song :
\(\left\{{}\begin{matrix}m+1=2\\-m^2-m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\-m^2-m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\left(l\right)\\m\ne1\\m\ne-2\end{matrix}\right.\)
Không tồn tại giá trị của m để hai hàm số..........
1. Bạn tự giải
2. Phương trình có 2 nghiệm khác 0 khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m^2-1\right)>0\\m^2-1\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\pm1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\Rightarrow4\left(x_1+x_2\right)=3x_1x_2\)
\(\Leftrightarrow8m=3\left(m^2-1\right)\)
\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)
Tham khảo nha: