Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi như vị trí các điểm không có gì đặc biệt
Trong mp (SAB), nối MN cắt AB kéo dài tại E
Trong mp (ABCD), nối EP kéo dài lần lượt cắt BC tại F và AD tại G
\(\Rightarrow\) Tứ giác MNFG là thiết diện của (MNP) và chóp
Lời giải:
Gọi $Q$ là điểm nằm trên $DC$ sao cho $AD\parallel PQ$
Khi đó: $MN\parallel AD\parallel PQ$ nên $Q\in (MNP)$
$(MNPQ)$ chính là thiết diện của hình chóp cắt bởi $(MNP)$
Giờ ta cần tìm diện tích hình thang $MNPQ$
$SA=SD; DB=SC; AB=CD$ nên $\triangle SAB=\triangle SDC$
Tương ứng ta có $MP=NQ$
$MN=\frac{AD}{2}=\frac{3a}{2}$
$PQ=AD=3a$
$\Rightarrow MNPQ$ là hình thang cân.
Áp dụng định lý cos:
$\cos \widehat{SAB}=\frac{SA^2+AB^2-SB^2}{2SA.AB}=\frac{MA^2+AP^2-MP^2}{2MA.AP}$
$\Leftrightarrow \frac{9a^2+9a^2-27a^2}{2.3a.3a}=\frac{\frac{9}{4}a^2+4a^2-MP^2}{2.\frac{3}{2}a.2a}$
$\Rightarrow MP^2=\frac{37}{4}a^2$
$\Rightarrow h_{MNPQ}=\sqrt{MP^2-(\frac{PQ-MN}{2})^2}=\frac{\sqrt{139}}{4}a$
Diện tích thiết diện:
$S=\frac{MN+PQ}{2}.h=\frac{9\sqrt{139}}{16}a^2$
Trong (SAD) do \(\dfrac{SM}{SA}\ne\dfrac{SP}{SD}\left(\dfrac{1}{2}\ne\dfrac{3}{4}\right)\) nên MP không song song với AD
⇒ Giả sửa MP cắt AD tai E
⇒ E ∈ (ABCD)
Trong (ABCD) gọi K là giao điểm của EN và BC
Trong (ABCD) gọi O là giao điểm của AC và BD
⇒ SO ⊂ (SBD)
Gọi giao điểm của NK và AC là I
Trong (SAC) IM cắt SO tại H
Trong (SBD) DH cắt SB tại Q
⇒ Bla bla bla gì đó
⇒ Thiết diện cần tìm là ngũ giác MPNKQ
À, "không tính" là đang nói tới D, E trong hình vẽ của em (nằm trên cạnh chóp kéo dài), không phải D, E trong hình của mình (nằm trên cạnh chóp)
Bạn kham khảo tại link:
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, E là ba điểm lần lượt lấy trên AD, CD, SO. Tìm thiết diện của hình chóp bởi ( MNP) - Hình học không gian - Diễn đàn Toán học
Copy và dán:
https://diendantoanhoc.net/topic/125716-cho-h%C3%ACnh-ch%C3%B3p-sabcd-c%C3%B3-%C4%91%C3%A1y-l%C3%A0-h%C3%ACnh-b%C3%ACnh-h%C3%A0nh-t%C3%A2m-o-g%E1%BB%8Di-m-n-e-l%C3%A0-ba-%C4%91i%E1%BB%83m-l%E1%BA%A7n-l%C6%B0%E1%BB%A3t-l%E1%BA%A5y-tr%C3%AAn-ad-cd-so-t%C3%ACm-thi%E1%BA%BFt-di%E1%BB%87/
Học tốt!
Coi như vị trí các điểm không có gì đặc biệt
Trong mặt phẳng \(SAB\)nối \(MN\)cắt \(AB\) kéo dài tại \(E\)
Trong mặt phẳng \(ABCD\)nối \(EP\)kéo dài lần lượt cắt \(BC\)tại \(F\), \(AD\)tại \(G\)
=> Tứ giác \(MNFG\)là thiết diện của \(MNP\)và chóp