K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

Do AH là đường cao trong tam giác ABC cân tại A nên AH cùng là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

Áp dụng định lý py-ta-go vào tam giác vuông AHC có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{2}\left(cm\right)\)

 

Do M là trung điểm của HC\(\Rightarrow HM=\dfrac{HC}{2}=\dfrac{\sqrt{2}}{2}\) (cm)

Áp dụng định lý py-ta-go vào tam giác AMH vuông có:

\(AH^2+HM^2=AM^2\)

\(\Leftrightarrow AM=\sqrt{AH^2+HM^2}=\sqrt{3+\dfrac{1}{2}}=\dfrac{\sqrt{14}}{2}\left(cm\right)\)

Có M và H lần lượt là tđ của HC và CA

Suy ra MN là đường trung bình của tam giác AHC

\(\Rightarrow\) MN//AH và \(MN=\dfrac{AH}{2}=\dfrac{\sqrt{3}}{2}\)(cm)

Vì \(AH\perp BC\)\(\Rightarrow MN\perp BC\)

Áp dụng định lý py-ta-go vào tam giác BNM vuông có:

\(BN^2=MN^2+BM^2=\dfrac{3}{4}+\left(BC-MC\right)^2=\dfrac{3}{4}+\left(2HC-HM\right)^2=\dfrac{3}{4}+\dfrac{9}{2}=\dfrac{21}{4}\)

\(\Rightarrow BN=\dfrac{\sqrt{21}}{2}\) (cm)

Vậy...

1 tháng 7 2021

Bạn nào giúp em với em sắp nộp bài rùi ạ!

 

Xét ΔAHC có

I là trung điểm của AH

N là trung điểm của AC

DO đó: IN là đường trung bình của ΔAHC

Suy ra: \(IH=3cm\)

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)

b: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

=>AHBE là hình chữ nhật

c: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

=>ABFC là hình thoi

\(HI=\dfrac{AB}{2}=2\left(cm\right)\)

\(HK=\dfrac{BC}{2}=3\left(cm\right)\)

4 tháng 11 2021

giải bài hộ mình nhé ko phải viết đáp án đâu

 

HI=2cm

HK=3cm

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=5^2-4^2=9\)

hay AH=3(cm)

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath