Giúp mình câu 75 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 16 = 2⁴
42 = 2.3.7
ƯCLN(16; 42) = 2
ƯC(16; 42) = Ư(2) = {1; 2}
b) 16 = 2⁴
42 = 2.3.7
86 = 2.43
ƯCLN(16; 42; 86) = 2
ƯC(16; 42; 86) = Ư(2) = {1; 2}
c) 25 = 5²
75 = 3.5²
ƯCLN(25; 75) = 5² = 25
ƯC(25; 75) = Ư(25) = {1; 5; 25}
d) 25 = 5²
55 = 5.11
75 = 3.5²
ƯCLN(25; 55; 75) = 5
ƯC(25; 55; 75) = Ư(5) = {1; 5}
Đặt B = 42004 + 42003 + 42002 + 42001 + ... + 42 + 4 + 1 (có 2005 số; 2005 chia 2 dư 1)
B = 42003.(4 + 1) + 42001.(4 + 1) + ... + 4.(4 + 1) + 1
B = 42003.5 + 42001.5 + ... + 4.5 + 1
B = 5.(42003 + 42001 + ... + 4) + 1
=> B = 5 x k + 1 (k thuộc N*; k chia hết cho 4)
=> A = 75 x (5 x k + 1) + 25
=> A = 75 x 5 x k + 75 + 25
=> A = (...00) + 100
=> A = (...00) chia hết cho 100
Có j thắc mắc thêm cứ hỏi
4/ Chứng minh rằng :a. 76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
\(25.24+25.48+75.16+75.56\)
\(=25.\left(24+48\right)+75.\left(16+56\right)\)
\(=25.72+75.72\)
\(=\left(25+75\right).72\)
\(=100.72\)
\(=7200\)
Nãy ghi nhầm =="
a)Hđ gđ là nghiệm pt
`x^2=2x+2m+1`
`<=>x^2-2x-2m-1=0`
Thay `m=1` vào pt ta có:
`x^2-2x-2-1=0`
`<=>x^2-2x-3=0`
`a-b+c=0`
`=>x_1=-1,x_2=3`
`=>y_1=1,y_2=9`
`=>(-1,1),(3,9)`
Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`
b)
Hđ gđ là nghiệm pt
`x^2=2x+2m+1`
`<=>x^2-2x-2m-1=0`
PT có 2 nghiệm pb
`<=>Delta'>0`
`<=>1+2m+1>0`
`<=>2m> -2`
`<=>m> 01`
Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`
Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`
`=>x_1^2+x_2^2=14`
`<=>(x_1+x_2)^2-2x_1.x_2=14`
`<=>4-2(-2m-1)=14`
`<=>4+2(2m+1)=14`
`<=>2(2m+1)=10`
`<=>2m+1=5`
`<=>2m=4`
`<=>m=2(tm)`
Vậy `m=2` thì ....
\(f'\left(x\right)=-2a.sin2x+b.cosbx\)
\(\Rightarrow\left\{{}\begin{matrix}f'\left(0\right)=-2a.sin\left(0\right)+b.cos\left(0\right)=2\\f'\left(\dfrac{\pi}{4}\right)=-2a.sin\left(\dfrac{\pi}{2}\right)+b.cos\left(\dfrac{b}{4}\right)=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\-2a+2.cos\left(\dfrac{\pi}{2}\right)=-4\end{matrix}\right.\)
\(\Rightarrow a=b=2\)
\(\Rightarrow a^2+b^2=8\)