K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)

\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)

\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(tổng có 2010 số 1)

\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

Xét tổng \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)

=> \(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)

=> \(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\)\(\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

=> \(3A=1-\frac{1}{4^{2010}}<1\)

=> \(A<\frac{1}{3}\)

=> \(C=2010-A>2010-\frac{1}{3}>2010-1>2009\)

 

30 tháng 8 2016

\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)

\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)

\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(có 2010 số 1)

\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

Xét : \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)

\(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)

\(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

\(3A=1-\frac{1}{4^{2010}}< 1\)

\(A< \frac{1}{3}\)

\(C=2010-A>2010-\frac{1}{3}>2010-1>2009\)

18 tháng 12 2016

lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?

18 tháng 12 2016

ĐANG CẦN GẤP

2007/2008<1

2008/2009<1

2009/2010<1

2010<2011<1

=>2007/2008+2008/2009+2009/2010+2010/2011<1+1+1+1

=>2007/2008+2008/2009+2009/2010+2010/2011<4(điều cần chứng minh)

12 tháng 2 2017

2007/2008 < 1

2008/2009 < 1

2009/2010 < 1

2010/2011 < 1

=> 2007/2008 + 2008/2009 + 2009/2010 + 2010/2011 < 1 + 1 + 1 + 1

=>2007/2008 + 2008/2009 + 2009/2010 + 2010/2011 < 4 ( điều cần chứng minh )

ai tk mình mình tk lại cho

21 tháng 1 2019

Ta có : 1 = 1

           \(\frac{1}{2^2}=\frac{1}{2.2}>\frac{1}{2.3}\)

21 tháng 1 2019

là sao bạn??????

24 tháng 3 2017

A=2010/2009+2011/2010+2012/2011+2009/2012=4,00000148

vay A lon hon 4

A>4

24 tháng 3 2017

a bang 2010/2009cong2012/2011cong2009/2012 bang4,00000148 vay A LON HON 4

28 tháng 4 2017

Bài 2:b)Ta có:

D=(51*52*53*...*100):2^50.

=(51*53*55*...*99)*(52*54*56*...*100):2^50.

Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.

Lại có:

52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25)   (vì 52;54;56;...;100 có 25 thừa số.

=26*27*28*...*50:2^25.

=(27*29*31*...*49)*(26*28*30*...*50):2^25

Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.

Lại có:

26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).

=13*14*15*...*25:2^12.

=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.

Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.

Giờ số nhỏ rồi bấm máy tính so sánh là được.\

=>C=D.

Vậy C=D.

mấy câu kia dễ rồi tự l;àm nha mk nhắc câu khó thôi.

tk cho mk nha các bn.

-chúc ai tk mk học giỏi-

28 tháng 4 2017

1/

a, x + (x+1) + (x+2) +...+ (x+100) = 2029099

(x+x+x+...+x) + (1+2+...+100) = 2029099

2011x + 2021055 = 2029099

2011x = 2029099 - 2021055 

2011x = 8044

x = 8044 : 2011

x = 4

b, 2+4+6+....+2x = 210

=> 2(1+2+3+...+x) = 210

=> \(\frac{2x\left(x+1\right)}{2}=210\)

=> x(x+1) = 14.15

=> x = 14

2/

a, Vì B < 1

\(\Rightarrow B< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}\)= A

Vậy A > B

b, Ta có:

\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)

\(=\frac{\left(51.52.53....100\right)\left(1.2.3.4....50\right)}{2^{50}.\left(1.2.3.4....50\right)}\)

\(=\frac{1.2.3.4.5.6.....100}{\left(2.1\right)\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)

\(=\frac{1.2.3.4.5.6......100}{2.4.6........100}=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)

\(=1.3.5....99=C\)

Vậy C = D

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1

7 tháng 5 2018

mik làm câu A thôi nha

ta có :

1 - 2009/2010 = 1/2010

1 - 2010/2011 = 1/2011

Phần bù nào bé thì phân số đó lớn .

Vì 1/2010 > 1/2011

Nên 2009/2010 > 2010/2011

7 tháng 5 2018

Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 ) 
Để so sánh hai phân số, ta so sánh các hiệu. 

\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)

Ta có :

\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)

\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

Ta thấy :

\(\frac{1}{2010}>\frac{1}{2011}\)

Hay :

\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)

Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)