CMR
52n+1\(\times\)2n+2+3n+2\(\times\)22n+1\(⋮\)19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n^2+n\right)\left(2n+5\right)-\left(n+1\right)\left(n^2+3n\right)\)
\(=2n^3+5n^2+2n^2+5n-\left(n^3+3n^2+n^2+3n\right)\)
\(=2n^3+7n^2+5n-n^3-4n^2-3n\)
\(=n^3+3n^2+2n\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
\(\dfrac{1}{2\cdot5}+\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{9\cdot19}+\dfrac{1}{10\cdot19}=\dfrac{3+2}{2.3.5}+\dfrac{4+3}{3\cdot4\cdot7}+...+\dfrac{10+9}{9\cdot10\cdot19}=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)
ta có:\(S=1\left(1.3+1\right)+2\left(2.3+1\right)+...+n\left(3n+1\right)\)
\(S=3\left(1^2+2^2+...+n^2\right)+\left(1+2+3+...+n\right)\)
\(S=3\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+\dfrac{n\left(n+1\right)}{2}\)
\(S=n\left(n+1\right)^2\)
Ta có:
\(\dfrac{11}{2}.\dfrac{12}{2}.\dfrac{13}{2}.....\dfrac{20}{2}\\ =\dfrac{11.12.13.....20}{2^{10}}\\ =\dfrac{\left(11.12.13.....20\right)\left(1.2.3.....10\right)}{2^{10}\left(1.2.3.....10\right)}\\ =\dfrac{1.2.3.4.....20}{2.4.6.8.....20}\\ =\dfrac{\left(1.3.5.7.....19\right)\left(2.4.6.....20\right)}{\left(2.4.6.....20\right)}\\ =1.3.5.7.....19\)
=> Đpcm
Đặt ƯCLN \(3n+2;2n+1=d\)
\(3n+2⋮d\Rightarrow6n+4⋮d\)
\(2n+1\Rightarrow6n+3⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\Rightarrow d=1\)( đpcm )