Cho
\(A=1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{4038}\)
\(B=1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4037}\)
So Sánh :\(\frac{A}{B}\)và \(1\frac{2019}{2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 22018 = a ; 32019 = b ; 52020 = c
Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
\(\Rightarrow A>1>\frac{3}{4}>B\)
Mình chỉ biết cách tính B thôi, đây nhé:
B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
Cái bài này bạn muốn làm thì bạn có thể lấy A-B hoặc B-A nếu nó ra kết quả dương thì tức là A>B hoặc B>A nhưng bạn thử cái A-B nhé vì ta sẽ chứng minh được A>B nhé nhưng bạn không thể lấy trực tiếp được mà hay cho lên thành 1011A và 1010B để cho nó tròn và bạn sẽ thực hiện phép tính 1011A -1010B và sẽ ra bằng 1/1011 +1/1012+....+1/2020 bạn có thể lên mạng để họ dạy cách tính ra sao rồi bạn sẽ chuyển A sang vế phải và lúc đó vế trái sẽ là 1010A-1010B tức là bằng 1010x(A-B) nghĩa là bạn phải chứng minh vế phải lớn hơn 0 và bạn cứ tính ra vế phải không phải là ra một kết quả nhưng mà kiểu chứng minh dấu lớn hơn ấy bạn cứ làm đi nó cũng sẽ ra nhé .
Lời giải:
\(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2020}\)
\(\Rightarrow 2B=\frac{2}{1.2}+\frac{2}{3.4}+\frac{2}{5.6}+....+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\( 2B< 1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
---------------------
Đặt \(2^{2018}=a; 3^{2019}=b; 5^{2020}=c(a,b,c>0)\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(\Rightarrow A>1> \frac{3}{4}> B\)
Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!
Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)
Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)
đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG
\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)
=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)
\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)
=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)
=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)
=>\(A>B\)
cách này mình tự nghĩ
Bạn tham khảo link tại đây nhé :v
https://olm.vn/hoi-dap/detail/217907126396.html