K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

a. x3+x2+2x2+2x

= (x3+x2)+(2x2+2x)

= x2(x+1)+2x(x+1)

= (x2+2x)(x+1)

= x(x+2)(x+1)

12 tháng 4 2022

\(f\left(-2\right)=0\)

\(=>2.\left(-2\right)+b=0\)

\(=>-4+b=0 =>b=4\)

12 tháng 4 2022

phần b nữa bạn

2 tháng 5 2017

a) để f(x) = 10 thì 6-2x = 10 => 2x = 6-10 = -4 => x = -2
b) tại f(x) = 6-2x = 0
thì x = (0-6)/2  = -3
Vậy đa thức f(x) = 6-2x có 1 nghiệm là x = -3 

2 tháng 5 2017

a) ta có : \(f\left(x\right)=6-2x=10\)

\(\Rightarrow2x=6-10=-4\)

\(\Rightarrow x=\frac{-4}{2}=-2\)

b) ta có : \(f\left(x\right)=6-2x=0\)

\(\Rightarrow2x=6-0=6\)

\(\Rightarrow x=\frac{6}{2}=3\)

Bài 9:

a: f(-4)=0

=>-4(m-1)+3m-1=0

=>-4m+4+3m-1=0

=>-m+3=0

=>m=3

b: f(-5)=-1

=>-5(m-1)+3m-1=-1

=>-5m+5+3m-1=-1

=>-2m+4=-1

=>-2m=-5

=>m=5/2

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.

d: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)

\(=x^2-3x+6+\dfrac{-1}{x+1}\)

Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

 

Bài 2:

x^3+6x^2+12x+m chia hết cho x+2

=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2

=>m-8=0

=>m=8

1 tháng 5 2021

a) Khi x = 2 là nghiệm của đa thức f(x) thì

\(f\left(x\right)=a.2^2-\left(5a-2\right).2+2=0\\ \Leftrightarrow4a-10a+4+2=0\\ \Leftrightarrow-6a=-6\\ \Leftrightarrow a=1\)

Vậy để x = 2 là nghiệm của đa thức f(x) thì a = 1

b) Khi a = 1 để f(x) có nghiệm thì 

\(f\left(x\right)=x^2-x.\left(5-2\right)+2=0\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy khi a = 1 thì nghiệm của đa thức f(x) là \(x\in\left\{1;2\right\}\)