K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
a. $f(x)=x^4-3x^2+2x-7=x^3(x+2)-2x^2(x+2)+x(x+2)-7$

$=(x+2)(x^3-2x^2+x)-7=g(x)(x^3-2x^2+x)-7$

Vậy $f(x)$ chia $g(x)$ được thương là $x^3-2x^2+x$ và dư là $-7$

b. Theo phần a $f(x)=(x^3-2x^2+x)g(x)-7$

Với $x$ nguyên, để $f(x)\vdots g(x)$ thì $7\vdots g(x)$

$\Leftrightarrow x+2$ là ước của $7$

$\Rightarrow x+2\in\left\{\pm 1;\pm 7\right\}$

$\Leftrightarrow x\in\left\{-3; -1; 5; -9\right\}$

c.

Theo định lý Bezout về phép chia đa thức, để $K(x)=-2x^3+x-m\vdots x+2$ thì: $K(-2)=0$

$\Leftrightarrow -2(-2)^3+(-2)-m=0$

$\Leftrightarrow 14-m=0$

$\Leftrightarrow m=14$

20 tháng 4 2017

Ta có: F(x) = x2 + ax + b

* F(2) = 22 + 2a + b = 0   =>

            => 4 + 2a + b  = 0  (1)

* F(3) = 32 + 3a + b =0 

        => 9 + 3a + b =0    (2)

- Lấy (2) - (1) , ta có:

 (9 + 3a + b ) - (4+ 2a + b) = 0   

=> (9-4) + (3a-2a) +(b-b) =0

=> 5+a=0

=> a= -5

- Từ 4+2a+b=0   =>  b= -4 - 2a

Mà a= -5

=> b = -4 - 2.(-5) 

=> b= -4 + 10 

=> b =6 

   

21 tháng 10 2019

Cho g( x ) = 0

\(\Leftrightarrow\)( x - 2 )( x - 3 ) = 0

\(\Leftrightarrow\)x = 2 hoặc x = 3

f( 2 ) = 2 . 23 - 3 . a . 22 + 2 . 2 + b = 20 - 12a + b ( 1 )

f( 3 ) = 2 . 33 - 3 . a . 32 + 2 . 3 + b = 48 - 27a + b ( 2 )

Lấy ( 1 ) và ( 2 ) ta có :

   - 28 + 15a = 0

\(\Rightarrow\)15a = 28 

\(\Rightarrow\)a = 28 / 15

\(\Rightarrow\)b = 12 / 5

19 tháng 1 2017

Giao luu vấn đề mới

x=1, -2 là nghiệm

\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)

20 tháng 11 2022

Bài 3:

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)

\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)

Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0

=>a=-1/3; b=2a+14=-2/3+14=40/3

29 tháng 1 2019

Định lí Bê-du: Số dư của phép chia đa thức cho nhị thức bằng giá trị của tại

Để F(x) chia hết cho (x-1) thì F(1)=0\(\Rightarrow2.1^3-3a.1^2+2.1+b\)\(=2-3a+2+b=0\Leftrightarrow-3a+b=-4\left(1\right)\)

Để F(x) chia hết cho (x+2) thì F(-2)=0\(\Rightarrow2.\left(-2\right)^3-3a\left(-2\right)^2+2\left(-2\right)+b\)\(=-16-12a-4+b=0\Rightarrow-12a+b=20\left(2\right)\)

Từ (1) và (2), ta có hpt:\(\left\{{}\begin{matrix}-3a+b=-4\\-12a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-8}{3}\\b=-12\end{matrix}\right.\)

Vậy với \(a=\dfrac{-8}{3},b=-12\) thì F(x) chia hết (x - 1)và (x + 2).