BÀi 5 : Cho :
a ) \(A=\left\{x\in N/x⋮6;x< 100\right\}\)
b ) \(B=\left\{x\in N/20⋮x\right\}\)
Hãy viết các tập hợp A , B bằng cách liệt kê các phần tử .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có các phần tử của A là bội của 6
Các phần tử của B là bội của 15
Các phần tử của C là bội của 30
mà [6;15]=30
=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30
Hay \(C=A\cap B\)
Vì BCNN(6;15)=30
nên tập hợp các bội của 30 sẽ là giao của 2 tập bội của 6 và bội của 15
=>C=A giao B
a) \(A=\left\{\varnothing\right\}\)
A không có phần tử nào
b) Số phần tử của B thuộc dãy: 2;4;6;8;....98;100
Vậy B có số phần tử là: (100-2):2+1 = 50 (phần tử)
c) Ta có: x + 1 = 0 => x = -1
Mà x phải thuộc N nên không thỏa mãn
Vậy C không có phần tử nào
d) Tập hợp D có vô số phần tử
Bắt đầu từ 0 và mỗi số liên tiếp hơn kém nhau 3 đơn vị
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
Bài 5 :
Ta có : \(x+3⋮x+2\)
\(\Leftrightarrow x+2+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy ...
Bài 6 :
Ta có : \(2x+7⋮x+1\)
\(\Leftrightarrow2\left(x+1\right)+5⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-6;4\right\}\)
Vậy ...
\(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)
Đặt \(x^2+ax=t\)
Khi đó: \(P=t\left(t-2a^2\right)+a^4\)
\(=t^2-2ta^2+\left(a^2\right)^2=\left(t-a^2\right)^2=\left(x^2+ax-a^2\right)^2\)
Chúc bạn học tốt.
a) \(A=\left\{0;6;12;18;...;96\right\}\)
b) \(B=\left\{0;2;4;5;10;20\right\}\)
Học tốt #
a) A={6;12;18;24;30;36;42;48;54;60;66;72;78;84;90;96}
b) B={1;2;4;5;10}