K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

loading...  loading...  loading...  

13 tháng 7 2016

A B C E M D

a) Ta có \(\hept{\begin{cases}AE\perp EM\\AE\perp BC\end{cases}\Rightarrow}EM\text{//}BC\Rightarrow\)BEMC là hình thang

Mà BEMC nội tiếp (O) => BEMC là hình thang cân.

b) Ta có : BEMC la hình thang cân (c/m câu a)

=> BE = MC (2 cạnh bên)

Lại có : \(DB^2+DE^2=BE^2=MC^2\) ;  \(DA^2+DC^2=AC^2\)

\(\Rightarrow DA^2+DB^2+DC^2+DE^2=MC^2+AC^2=AM^2=\left(2R\right)^2=4R^2\)

a: góc AEB=góc AHB=90 độ

=>ABHE nội tiếp

b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC

=>HE//CD

a: Xét tứ giác BEMC có

góc BEC=góc BMC=90 độ

=>BEMC là tứ giác nội tiếp

b: AEHM; BEHI;CIHM;AEIC; BIMA

c: Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

Xét ΔACK vuông tại C và ΔAIB vuông tại I có

góc AKC=góc ABI

=>ΔACK đồng dạng vơi ΔAIB

=>AC/AI=AK/AB

=>AC*AB=AK*AI

28 tháng 2 2023

Vẽ giùm mình cái hình đc ko ạ

a: Xét (O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM\(\perp\)AB

mà CH\(\perp\)AB

nên CH//BM

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

=>AC\(\perp\)CM

mà BH\(\perp\)AC

nên BH//CM

Xét tứ giác BHCM có

BH//CM

BM//CH

Do đó: BHCM là hình bình hành

b:

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\)

Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)

\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)

mà \(\widehat{ABC}=\widehat{AMC}\)

nên \(\widehat{BAN}=\widehat{MAC}\)

Xét (O) có

ΔANM nội tiếp

AM là đường kính

Do đó: ΔANM vuông tại N

=>AN\(\perp\)NM

mà AN\(\perp\)BC

nên BC//NM

Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)

\(\widehat{ABC}=\widehat{ANC}\)

Do đó: \(\widehat{CHD}=\widehat{ANC}\)

=>ΔCHN cân tại C

=>CH=CN

mà CH=BM

nên BM=CN

Xét tứ giác BCMN có BC//MN

nên BCMN là hình thang

Hình thang BCMN có BM=CN

nên BCMN là hình thang cân

1: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{EAB}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)