Chứng minh rằng trong tứ giác tổng 2 đường chéo lớn hơn tổng hai cạnh đối .
CÂU MIK MUỐN HỎI LÀ: cạnh đối là cạnh j á?
mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của hai đường chéo AC và BD
* Trong ∆ OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
a, Gọi AC giao BD tai O
TAm giác OAB có
OA + OB > AB (1)
Tam giác OCD có
OC + OD > CD (2)
cộng vế với vế của (1) và (2) -=> AC + BD > AB + CD
Xét tam giác AEC , tam giác DEB
AE+EC>=AC
BE+DE>=BD
====>AE+EC+BE+DE>=AC+BD
AD+BC>=AC+BD
Vậy....................(đpcm)
Gọi O là giao điểm của hai đường chéo AC và BD.
Trong ∆OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
Trong ∆OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Trong các tam giác AOB Và COD theo bất đẳng thức tam giác ta lần lượt có:
OA + OB > AB
OC + OD > CD.
Cộng theo từng vế hai bất đẳng thức là ra
P/s cái tam giác tự vẽ rồi đặt tên giống mình
Cx có thể tham khảo ở trên mạng